Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Efficient detection of hessian matrix sparsity pattern

Published: 22 February 2017 Publication History

Abstract

Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical optimization algorithms. For large-scale problems often the Hessian matrix is sparse and structured, and it is preferable to exploit such information when available. Using symmetry in the second derivative values of the components it is possible to detect the sparsity pattern of the Hessian via products of the Hessian matrix with specially chosen direction vectors. We use graph coloring methods and employ efficient sparse data structures to implement the sparsity pattern detection algorithms. Results from preliminary numerical testings are highly promising.

References

[1]
ADMAT, http://www.cayugaresearch.com (accessed May 15, 2016).
[2]
R. G. Carter. Fast Numerical Determination of Symmetric Sparsity Patterns. Tech. report MCS- P326--0992, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1992.
[3]
T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal., 20(1):187--209, 1983.
[4]
A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian matrices. J. Inst. Math. Appl., 13:117--119, 1974.
[5]
The Matrix Market Project. http://math.nist.gov/MatrixMarket/ (accessed May 15, 2016).
[6]
A. H. Gebremedhin, F. Manne, and A. Pothen. What Color is your Jacobian? Graph Coloring for Computing Derivatives. SIAM Rev., 47(4):629--705, 2005.
[7]
A. Griewank and C. Mitev. Detecting Jacobian sparsity patterns by Bayesian probing. Math. Prog., 93(1):1--25, 2002.
[8]
M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A. H. Suny. DSJM: A Software Toolkit for Direct Determination of Sparse Jacobian Matrices. To appear in the Springer Lecture Notes in Computer Science LNCS 9725, ICMS 2016, Berlin.
[9]
S. A. Forth. An Efficient Overloaded Implementation of Forward Mode Automatic Differentiation in MATLAB. ACM Transactions on Mathematical Software, 32(2):195--222, 2006.
[10]
A. Walther and A. Griewank. Getting started with ADOL-C. In U. Naumann and O. Schenk Eds., Combinatorial Scientific Computing. Chapman-Hall CRC Computational Science, Chapter 7, 181--202, 2012.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 50, Issue 4
December 2016
66 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/3055282
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 February 2017
Published in SIGSAM-CCA Volume 50, Issue 4

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media