Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3056540.3064945acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
short-paper

Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease

Published: 21 June 2017 Publication History

Abstract

This paper presents a novel procedure to train Extreme Learning Machine models on datasets with missing values. In effect, a separate model is learned to classify every sample in the test set, however, this is accomplished in an efficient manner which does not require accessing the training data repeatedly. Instead, a sparse structure is imposed on the input layer weights, which enables calculating the necessary statistics in the training phase. An application to predicting the progression of Huntington's disease from brain scans is presented. Experimental comparisons show promising results equivalent to the state of the art in machine learning with incomplete data.

References

[1]
K.-M. Björk, E. Eirola, Y. Miche, and A. Lendasse. A new application of machine learning in health care. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pages 49:1--49:4. ACM, 2016.
[2]
E. Eirola, A. Akusok, K.-M. Björk, H. Johnson, and A. Lendasse. Predicting Huntington's disease: Extreme learning machine with missing values. In Proceedings of ELM-2016, 2017. To appear.
[3]
E. Eirola, G. Doquire, M. Verleysen, and A. Lendasse. Distance estimation in numerical data sets with missing values. Information Sciences, 240:115--128, 2013.
[4]
E. Eirola, A. Lendasse, F. Corona, and M. Verleysen. The Delta test: The 1-NN estimator as a feature selection criterion. In 2014 International Joint Conference on Neural Networks (IJCNN), pages 4214--4222. IEEE, 2014.
[5]
H. Gao, X.-W. Liu, Y.-X. Peng, and S.-L. Jian. Sample-based extreme learning machine with missing data. Mathematical Problems in Engineering, 2015.
[6]
G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4):879--892, July 2006.
[7]
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: A new learning scheme of feedforward neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference On, volume 2, pages 985--990, 2004.
[8]
A. Lendasse, A. Akusok, O. Simula, F. Corona, M. van Heeswijk, E. Eirola, and Y. Miche. Extreme learning machine: A robust modeling technique? yes! In I. Rojas, G. Joya, and J. Gabestany, editors, Advances in Computational Intelligence: 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Proceedings, Part I, pages 17--35, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
[9]
R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley-Interscience, 2002.
[10]
J. T. Matsui, J. G. Vaidya, D. Wassermann, R. E. Kim, V. A. Magnotta, H. J. Johnson, and J. S. Paulsen. Prefrontal cortex white matter tracts in prodromal Huntington disease. Human brain mapping, 36(10):3717--3732, 2015.
[11]
Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse. TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing, 74(16):2413--2421, 2011.
[12]
J. S. Paulsen, D. R. Langbehn, J. C. Stout, E. Aylward, C. A. Ross, M. Nance, M. Guttman, S. Johnson, M. MacDonald, L. J. Beglinger, K. Duff, E. Kayson, K. Biglan, I. Shoulson, D. Oakes, and M. Hayden. Detection of Huntington's disease decades before diagnosis: the Predict-HD study. Journal of Neurology, Neurosurgery & Psychiatry, 79(8):874--880, 2008.
[13]
J. S. Paulsen, J. D. Long, C. A. Ross, D. L. Harrington, C. J. Erwin, J. K. Williams, H. J. Westervelt, H. J. Johnson, E. H. Aylward, Y. Zhang, et al. Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study. The Lancet Neurology, 13(12):1193--1201, 2014.
[14]
D. Sovilj, E. Eirola, Y. Miche, K. Björk, R. Nian, A. Akusok, and A. Lendasse. Extreme learning machine for missing data using multiple imputations. Neurocomputing, 174, Part A:220--231, 2016.
[15]
A. Sturrock, C. Laule, K. Wyper, R. A. Milner, J. Decolongon, R. D. Santos, A. J. Coleman, K. Carter, S. Creighton, N. Bechtel, et al. A longitudinal study of magnetic resonance spectroscopy Huntington's disease biomarkers. Movement Disorders, 30(3):393--401, 2015.
[16]
A. N. Tikhonov. On the stability of inverse problems. In Proceedings of the USSR Academy of Sciences, volume 39, pages 195--198, 1943.
[17]
P. Xie, X. Liu, J. Yin, and Y. Wang. Absent extreme learning machine algorithm with application to packed executable identification. Neural Computing and Applications, 27(1):93--100, 2016.
[18]
Y.-T. Yan, Y.-P. Zhang, J. Chen, and Y.-W. Zhang. Incomplete data classification with voting based extreme learning machine. Neurocomputing, 193:167--175, 2016.
[19]
Q. Yu, Y. Miche, E. Eirola, M. van Heeswijk, E. Séverin, and A. Lendasse. Regularized extreme learning machine for regression with missing data. Neurocomputing, 102:45--51, 2013.

Cited By

View all
  • (2023)Exploring Huntington’s Disease Diagnosis via Artificial Intelligence Models: A Comprehensive ReviewDiagnostics10.3390/diagnostics1323359213:23(3592)Online publication date: 3-Dec-2023
  • (2023)Leveraging Computational Intelligence Techniques for Diagnosing Degenerative Nerve Diseases: A Comprehensive Review, Open Challenges, and Future Research DirectionsDiagnostics10.3390/diagnostics1302028813:2(288)Online publication date: 12-Jan-2023
  • (2020)Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks—A Case Study on Genome Gap-FillingComputers10.3390/computers90200379:2(37)Online publication date: 11-May-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
PETRA '17: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments
June 2017
455 pages
ISBN:9781450352277
DOI:10.1145/3056540
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • NSF: National Science Foundation
  • CSE@UTA: Department of Computer Science and Engineering, The University of Texas at Arlington

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 June 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Extreme learning machine
  2. Huntington's disease
  3. imputation
  4. missing values

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Conference

PETRA '17

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Exploring Huntington’s Disease Diagnosis via Artificial Intelligence Models: A Comprehensive ReviewDiagnostics10.3390/diagnostics1323359213:23(3592)Online publication date: 3-Dec-2023
  • (2023)Leveraging Computational Intelligence Techniques for Diagnosing Degenerative Nerve Diseases: A Comprehensive Review, Open Challenges, and Future Research DirectionsDiagnostics10.3390/diagnostics1302028813:2(288)Online publication date: 12-Jan-2023
  • (2020)Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks—A Case Study on Genome Gap-FillingComputers10.3390/computers90200379:2(37)Online publication date: 11-May-2020
  • (2018)Distance Estimation for Incomplete Data by Extreme Learning MachineProceedings of ELM-201710.1007/978-3-030-01520-6_18(203-209)Online publication date: 17-Oct-2018

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media