Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3067665.3067672acmotherconferencesArticle/Chapter ViewAbstractPublication Pageswns3Conference Proceedingsconference-collections
research-article

Exploiting the Capture Effect on DSC and BSS Color in Dense IEEE 802.11ax Deployments

Published: 13 June 2017 Publication History

Abstract

Future wireless local area networks (WLANs) are expected to serve thousands of users in diverse environments. To address the new challenges that WLANs will face, and to overcome the limitations that previous IEEE standards introduced, a new IEEE 802.11 amendment is under development. IEEE 802.11ax aims to enhance spectrum efficiency in a dense deployment; hence system throughput improves. Dynamic Sensitivity Control (DSC) and BSS Color are the main schemes under consideration in IEEE 802.11ax for improving spectrum efficiency In this paper, we evaluate DSC and BSS Color schemes when physical layer capture (PLC) is modelled. PLC refers to the case that a receiver successfully decodes the stronger frame when collision occurs. It is shown, that PLC could potentially lead to fairness issues and higher throughput in specific cases. We study PLC in a small and large scale scenario, and show that PLC could also improve fairness in specific scenarios.

References

[1]
M.-S. Afaqui, E. Garcia-Villegas, E. Lopez-Aguilera, G. Smith, and D. Camps. 2015. Evaluation of Dynamic Sensitivity Control Algorithm for IEEE 802.11ax. In IEEE Wireless Communications and Networking Conference (WCNC 2015). IEEE, New Orleans, USA, 1060--1065.
[2]
Y. Bejerano, H.-G. Choi, and S.-J. Han. 2015. Fairness Analysis of Physical Layer Capture Effects in IEEE 802.11 Networks. In 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE, Mumbai, India, 323--330.
[3]
B. Bellalta. 2016. IEEE 802.11 ax: High-Efficiency WLANs. IEEE Wireless Communications 23, 1 (2016), 38--46.
[4]
B. Bing. 1999. Measured Performance of the IEEE 802.11 Wireless LAN. In 1999 Local Computer Networks Conference (LCN'99). IEEE, Massachusetts, USA, 34--42.
[5]
I. Bruyland. 1978. The Influence of Finite Bandwidth on the Capture Effect in FM Demodulators. IEEE Transactions on Communications 26, 6 (1978), 776--784.
[6]
Cisco. 2016. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015--2020. White Paper Document ID: 1454457600805266.
[7]
J. Deng, B. Liang, and P. K. Varshney. 2004. Tuning the Carrier Sensing Range of IEEE 802.11 MAC. In Global Telecommunications Conference, 2004. GLOBECOM'04. IEEE, Vol. 5. IEEE, Dallas, USA, 2987--2991.
[8]
V. Ferdowsi and D. Lee. 2015. System Level Simulator Evaluation with/without Capture Effect. Presentation doc. IEEE802.11-15/1302r2. IEEE.
[9]
M. Fischer, R. Porat, S. Merlin, H. Zhang, and S. Zheng. 2013. CID 205 BSSID Color Bits. Presentation doc. IEEE802. 11--13/1207r1. IEEE.
[10]
S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng. 2006. Methods for Restoring MAC Layer Fairness in IEEE 802.11 Networks with Physical Layer Capture. In Proceedings of the 2nd international workshop on Multi-hop ad hoc networks: from theory to reality. ACM, Florence, Italy, 7--14.
[11]
L. Hu, C. Coletti, N. Huan, P. Mogensen, and J. Elling. 2012. How Much can Wi-Fi Offload? a Large-scale Dense-urban Indoor Deployment Study. In 2012 IEEE 75th Vehicular Technology Conference (VTC Spring). IEEE, Yokohama, Japan, 1--6.
[12]
T. Hytonen. 2001. Optimal Wrap-around Network Simulation.
[13]
IEEE. 2012. 802.11-2012-IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802 (2012).
[14]
IEEE. 2013. 802.11-ac-IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications -Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz. IEEE Std 802 (2013).
[15]
T. Itagaki, Y. Morioka, M. Mori, K. Ishihara, S. Shinohara, and Y. Inoue. 2015. Performance Analysis of BSS Color and DSC. Presentation doc. IEEE802.11-15/0045r0. IEEE.
[16]
H.-J. Ju, I. Rubin, and Y.-C. Kuan. 2003. An Adaptive RTS/CTS Control Mechanism for IEEE 802.11 MAC Protocol. In The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring, Vol. 2. IEEE, Orlando, USA, 1469--1473.
[17]
A. Kochut, A. Vasan, A. U. Shankar, and A. Agrawala. 2004. Sniffing out the Correct Physical Layer Capture Model in 802.11b. In Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP 2004). IEEE, Berlin, Germany, 252--261.
[18]
J.Lee, W.Kim, S.-J. Lee, D. Jo, J.Ryu, T. Kwon, and Y. Choi. 2007. An Experimental Study on the Capture Effect in 802.11a Networks. In Proceedings of the second ACM international workshop on Wireless network testbeds, experimental evaluation and characterization. ACM, Montreal, Canada, 19--26.
[19]
K. Pahlavan and A-H. Levesque. 2005. Topology, Medium Access, and Performance. John Wiley & Sons, Inc., 501--579.
[20]
T. Ropitault. 2016. Simulation-based Evaluation of DSC in Enterprise Scenario. Presentation doc. IEEE802.11-16/0604r1. IEEE.
[21]
I. Selinis, M. Filo, S. Vahid, J. Rodriguez, and R. Tafazolli. 2016. Evaluation of the DSC Algorithm and the BSS Color Scheme in Dense Cellular-like IEEE 802.11ax Deployments. In 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, Valencia, Spain, 1--7.
[22]
G. Smith. 2013. Dynamic Sensitivity Control-v2. Presentation doc. IEEE802.11-13/1012r4. IEEE.
[23]
G.Smith. 2016. TG ax Indoor Enterprise Scenarios, Color, DSC and TPC Presentation doc. IEEE802.11-16/0597r1. IEEE.
[24]
M. Soroushnejad and E. Geraniotis. 1991. Probability of Capture and Rejection of Primary Multiple-access Interference in Spread-spectrum Networks. IEEE Transactions on Communications 39, 6 (1991), 986--994.
[25]
IEEE 802.11 TGax. 2017. Evaluation Methodology. Presentation doc. IEEE802.11-14-0571-12-00ax.IEEE.
[26]
IEEE 802.11 TGax. 2017. IEEE p802.11axD1.0: Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 6: Enhancements for High Efficiency WLAN. (2017).
[27]
IEEE 802.11 TGax. 2017. Simulation Scenarios. Presentation doc. IEEE802.11-14-0980-14-00ax.IEEE.
[28]
IEEE 802.11 TGax. 2017. Status of Project IEEE 802.11ax, IEEE P802.11, Task Group AX. (2017). http://www.ieee802.org/11/Reports/tgax_update.htm
[29]
The ns-3 Network Simulator. 2017. (2017). http://www.nsnam.org/
[30]
J. Ward and R. T. Compton. 1992. Improving the Performance of a Slotted ALOHA Packet Radio Network with an Adaptive Array. IEEE Transactions on Communications 40, 2 (1992), 292--300.
[31]
C. Ware, J. Chicharo, and T. Wysocki. 2001. Modelling of Capture Behaviour in IEEE 802.11 Radio Modems. In IEEE International Conference on Telecommunications. Helsinki, Finland.
[32]
K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. 2005. Exploiting the Capture Effect for Collision Detection and Recovery. In The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II. IEEE, Sydney, Australia, 45--52.
[33]
J. Zhu, B. Metzler, X. Guo, and Y. Liu. 2006. Adaptive CSMA for Scalable Network Capacity in High-Density WLAN: A Hardware Prototyping Approach. In Infocom. Barcelona, Spain.

Cited By

View all
  • (2023)False Protection of Real-Time Traffic with Quieting in Heterogeneous Wi-Fi 7 Networks: An Experimental StudySensors10.3390/s2321892723:21(8927)Online publication date: 2-Nov-2023
  • (2022)A Survey of Wi-Fi 6: Technologies, Advances, and ChallengesFuture Internet10.3390/fi1410029314:10(293)Online publication date: 14-Oct-2022
  • (2022)Performance Study of High-Efficiency IEEE 802.11ax WLAN Standard Using NS-3 Simulator2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)10.1109/CAMAD55695.2022.9966905(226-231)Online publication date: 2-Nov-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WNS3 '17: Proceedings of the 2017 Workshop on ns-3
June 2017
134 pages
ISBN:9781450352192
DOI:10.1145/3067665
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. BSS Color
  2. DSC
  3. IEEE 802.11ax
  4. PLC
  5. Physical Layer Capture
  6. WLAN

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

WNS3 '17
WNS3 '17: Workshop on ns-3
June 13 - 14, 2017
Porto, Portugal

Acceptance Rates

Overall Acceptance Rate 54 of 82 submissions, 66%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)22
  • Downloads (Last 6 weeks)4
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2023)False Protection of Real-Time Traffic with Quieting in Heterogeneous Wi-Fi 7 Networks: An Experimental StudySensors10.3390/s2321892723:21(8927)Online publication date: 2-Nov-2023
  • (2022)A Survey of Wi-Fi 6: Technologies, Advances, and ChallengesFuture Internet10.3390/fi1410029314:10(293)Online publication date: 14-Oct-2022
  • (2022)Performance Study of High-Efficiency IEEE 802.11ax WLAN Standard Using NS-3 Simulator2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)10.1109/CAMAD55695.2022.9966905(226-231)Online publication date: 2-Nov-2022
  • (2021)Performance Analysis of the IEEE 802.11ax OBSS_PD-Based Spatial ReuseIEEE/ACM Transactions on Networking10.1109/TNET.2021.311781630:2(616-628)Online publication date: 11-Oct-2021
  • (2020)Computer Network Simulation with ns-3: A Systematic Literature ReviewElectronics10.3390/electronics90202729:2(272)Online publication date: 5-Feb-2020
  • (2020)An IEEE 802.11ax Interference-Aware MAC Queue2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications10.1109/PIMRC48278.2020.9217315(1-7)Online publication date: Aug-2020
  • (2020)Rate Control With Spatial Reuse for Wi-Fi 6 Dense DeploymentsIEEE Access10.1109/ACCESS.2020.30235528(168898-168909)Online publication date: 2020
  • (2019)Komondor: a Wireless Network Simulator for Next-Generation High-Density WLANs2019 Wireless Days (WD)10.1109/WD.2019.8734225(1-8)Online publication date: Apr-2019
  • (2019)Damysus: A Practical IEEE 802.11ax BSS Color Aware Rate Control AlgorithmInternational Journal of Wireless Information Networks10.1007/s10776-019-00439-626:4(285-307)Online publication date: 2-Jul-2019
  • (2018)Control OBSS/PD Sensitivity Threshold for IEEE 802.11ax BSS Color2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)10.1109/PIMRC.2018.8580778(1-7)Online publication date: 9-Sep-2018
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media