Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3067695.3067722acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Automated offline design of algorithms

Published: 15 July 2017 Publication History
First page of PDF

References

[1]
T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1):1--41, July 2009.
[2]
B. Adenso-Díaz and M. Laguna. Fine-tuning of algorithms using fractional experimental design and local search. Operations Research, 54(1):99--114, 2006.
[3]
C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the automatic configuration of algorithms. In I. P. Gent, editor, Principles and Practice of Constraint Programming, CP 2009, volume 5732 of Lecture Notes in Computer Science, pages 142--157. Springer, Heidelberg, Germany, 2009.
[4]
C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free optimization. SIAM Journal on Optimization, 17(3):642--664, 2006.
[5]
C. Audet, C.-K. Dang, and D. Orban. Algorithmic parameter optimization of the DFO method with the OPAL framework. In K. Naono, K. Teranishi, J. Cavazos, and R. Suda, editors, Software Automatic Tuning: From Concepts to State-of-the-Art Results, pages 255--274. Springer, 2010.
[6]
P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In T. Bartz-Beielstein, M. J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M. Sampels, editors, Hybrid Metaheuristics, volume 4771 of Lecture Notes in Computer Science, pages 108--122. Springer, Heidelberg, Germany, 2007.
[7]
T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential parameter optimization. In Proceedings of the 2005 Congress on Evolutionary Computation (CEC 2005), pages 773--780, Piscataway, NJ, Sept. 2005. IEEE Press.
[8]
T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The sequential parameter optimization toolbox. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algorithms, pages 337--360. Springer, Berlin, Germany, 2010.
[9]
M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring metaheuristics. In W. B. Langdon et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, pages 11--18. Morgan Kaufmann Publishers, San Francisco, CA, 2002.
[10]
M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated F-race: An overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algorithms, pages 311--336. Springer, Berlin, Germany, 2010.
[11]
E. K. Burke, M. R. Hyde, and G. Kendall. Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation, 16(7):406--417, 2012.
[12]
W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, NY, third edition, 1999.
[13]
S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental design to find effective parameter settings for heuristics. Journal of Heuristics, 7(1):77--97, 2001.
[14]
T. Dean and M. S. Boddy. An analysis of time-dependent planning. In H. E. Shrobe, T. M. Mitchell, and R. G. Smith, editors, Proceedings of the 7th National Conference on Artificial Intelligence, AAAI-88, pages 49--54. AAAI Press/MIT Press, Menlo Park, CA, 1988. URL http://www.aaai.org/Conferences/AAAI/aaai88.php.
[15]
J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework. In N. Krasnogor and P. L. Lanzi, editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, pages 2019--2026. ACM Press, New York, NY, 2011. ISBN 978-1-4503-0557-0.
[16]
G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia, V. Trianni, and M. Birattari. AutoMoDe-Chocolate: Automatic design of control software for robot swarms. Swarm Intelligence, 2015.
[17]
A. S. Fukunaga. Automated discovery of local search heuristics for satisfiability testing. Evolutionary Computation, 16(1):31--61, Mar. 2008.
[18]
J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122--128, 1986.
[19]
F. Hutter, D. Babić, H. H. Hoos, and A. J. Hu. Boosting verification by automatic tuning of decision procedures. In FMCAD'07: Proceedings of the 7th International Conference Formal Methods in Computer Aided Design, pages 27--34, Austin, Texas, USA, 2007a. IEEE Computer Society, Washington, DC, USA.
[20]
F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local search. In R. C. Holte and A. Howe, editors, Proc. of the Twenty-Second Conference on Artifical Intelligence (AAAI '07), pages 1152--1157. AAAI Press/MIT Press, Menlo Park, CA, 2007b.
[21]
F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267--306, Oct. 2009.
[22]
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer programming solvers. In A. Lodi, M. Milano, and P. Toth, editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 7th International Conference, CPAIOR 2010, volume 6140 of Lecture Notes in Computer Science, pages 186--202. Springer, Heidelberg, Germany, 2010.
[23]
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In C. A. Coello Coello, editor, Learning and Intelligent Optimization, 5th International Conference, LION 5, volume 6683 of Lecture Notes in Computer Science, pages 507--523. Springer, Heidelberg, Germany, 2011.
[24]
A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. SATenstein: Automatically building local search SAT solvers from components. In C. Boutilier, editor, Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), pages 517--524. AAAI Press, Menlo Park, CA, 2009.
[25]
M. Lang, H. Kotthaus, Marwedel, C. Weihs, J. Rahnenführer, and B. Bischl. Automatic model selection for high-dimensional survival analysis. Journal of Statistical Computation and Simulation, 85(1):62--76, 2014.
[26]
K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial auction algorithms. In A. Jhingran et al., editors, ACM Conference on Electronic Commerce (EC-00), pages 66--76. ACM Press, New York, NY, 2000.
[27]
T. Liao, M. A. Montes de Oca, and T. Stützle. Computational results for an automatically tuned CMA-ES with increasing population size on the CEC'05 benchmark set. Soft Computing, 17(6):1031--1046, 2013.
[28]
M. López-Ibáñez and T. Stützle. The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation, 16(6):861--875, 2012.
[29]
M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011. URL http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf.
[30]
M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari. The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43--58, 2016.
[31]
F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T. Stützle. Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers & Operations Research, 51:190--199, 2014.
[32]
P. Miranda, R. M. Silva, and R. B. Prudêncio. Fine-tuning of support vector machine parameters using racing algorithms. In 22st European Symposium on Artificial Neural Networks, Computational Intelligence And Machine Learning, Bruges, April 23-24-25, 2014, pages 325--330. ESANN, 2014.
[33]
M. A. Montes de Oca, D. Aydin, and T. Stützle. An incremental particle swarm for large-scale continuous optimization problems: An example of tuning-in-the-loop (re)design of optimization algorithms. Soft Computing, 15(11):2233--2255, 2011.
[34]
V. Nannen and A. E. Eiben. A method for parameter calibration and relevance estimation in evolutionary algorithms. In M. Cattolico et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2006, pages 183--190. ACM Press, New York, NY, 2006.
[35]
M. Oltean. Evolving evoluionary algorithms using linear genetic programming. Evolutionary Computation, 13(3):387--410, 2005.
[36]
E. Ridge and D. Kudenko. Tuning the performance of the MMAS heuristic. In T. Stützle, M. Birattari, and H. H. Hoos, editors, Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2007, volume 4638 of Lecture Notes in Computer Science, pages 46--60. Springer, Heidelberg, Germany, 2007.
[37]
R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2):479--494, 2005.
[38]
S. K. Smit and A. E. Eiben. Comparing parameter tuning methods for evolutionary algorithms. In Proceedings of the 2009 Congress on Evolutionary Computation (CEC 2009), pages 399--406. IEEE Press, Piscataway, NJ, 2009.
[39]
S. K. Smit and A. E. Eiben. Beating the 'world champion' evolutionary algorithm via REVAC tuning. In H. Ishibuchi et al., editors, Proceedings of the 2010 Congress on Evolutionary Computation (CEC 2010), pages 1--8. IEEE Press, Piscataway, NJ, 2010.
[40]
K. Sörensen. Metaheuristics---the metaphor exposed. International Transactions in Operational Research, 22(1):3--18, 2015.
[41]
J. A. Vázquez-Rodríguez and G. Ochoa. On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming. Journal of the Operational Research Society, 62(2):381--396, 2010.
[42]
S. Wessing, N. Beume, G. Rudolph, and B. Naujoks. Parameter tuning boosts performance of variation operators in multiobjective optimization. In R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors, Parallel Problem Solving from Nature, PPSN XI, volume 6238 of Lecture Notes in Computer Science, pages 728--737. Springer, Heidelberg, Germany, 2010.
[43]
Z. Yuan, M. A. Montes de Oca, T. Stützle, and M. Birattari. Continuous optimization algorithms for tuning real and integer algorithm parameters of swarm intelligence algorithms. Swarm Intelligence, 6(1):49--75, 2012.
[44]
Z. Yuan, M. A. Montes de Oca, T. Stützle, H. C. Lau, and M. Birattari. An analysis of post-selection in automatic configuration. In C. Blum and E. Alba, editors, Proceedings of GECCO 2013, pages 1557--1564. ACM Press, New York, NY, 2013.
[45]
S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73--83, 1996.
[46]
E. Zitzler, L. Thiele, and J. Bader. On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation, 14 (1):58--79, 2010.
  1. Automated offline design of algorithms

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference Companion
    July 2017
    1934 pages
    ISBN:9781450349390
    DOI:10.1145/3067695
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 July 2017

    Check for updates

    Qualifiers

    • Tutorial

    Funding Sources

    • European Research Council under the European Union's Seventh Framework Programme
    • EU
    • F.R.S.-FNRS
    • Interuniversity Attraction Poles Programme of the Belgian Science Policy Office

    Conference

    GECCO '17
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 165
      Total Downloads
    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media