Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Mining Community Structures in Multidimensional Networks

Published: 29 June 2017 Publication History

Abstract

We investigate the problem of community detection in multidimensional networks, that is, networks where entities engage in various interaction types (dimensions) simultaneously. While some approaches have been proposed to identify community structures in multidimensional networks, there are a number of problems still to solve. In fact, the majority of the proposed approaches suffer from one or even more of the following limitations: (1) difficulty detecting communities in networks characterized by the presence of many irrelevant dimensions, (2) lack of systematic procedures to explicitly identify the relevant dimensions of each community, and (3) dependence on a set of user-supplied parameters, including the number of communities, that require a proper tuning. Most of the existing approaches are inadequate for dealing with these three issues in a unified framework. In this paper, we develop a novel approach that is capable of addressing the aforementioned limitations in a single framework. The proposed approach allows automated identification of communities and their sub-dimensional spaces using a novel objective function and a constrained label propagation-based optimization strategy. By leveraging the relevance of dimensions at the node level, the strategy aims to maximize the number of relevant within-community links while keeping track of the most relevant dimensions. A notable feature of the proposed approach is that it is able to automatically identify low dimensional community structures embedded in a high dimensional space. Experiments on synthetic and real multidimensional networks illustrate the suitability of the new method.

References

[1]
Alessia Amelio and Clara Pizzuti. 2014. A cooperative evolutionary approach to learn communities in multilayer networks. In Proceedings of Parallel Problem Solving from Nature - PPSN XIII. Lecture Notes in Computer Science, vol. 8672, Springer, 222--232.
[2]
Michael J. Barber and John W. Clark. 2009. Detecting network communities by propagating labels under constraints. Physical Review E 80, 2 (2009), 026129.
[3]
Federico Battiston, Vincenzo Nicosia, and Vito Latora. 2014. Structural measures for multiplex networks. Physical Review E 89, 3 (2014), 032804.
[4]
Michele Berlingerio, Michele Coscia, and Fosca Giannotti. 2011. Finding and characterizing communities in multidimensional networks. In Proceedings of the IEEE International Conference on Advances in Social Networks Analysis and Mining (ASONAM’2011). 490--494.
[5]
Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino Pedreschi. 2013. Multidimensional networks: Foundations of structural analysis. World Wide Web 16, 5--6 (2013), 567--593.
[6]
Michele Berlingerio, Fabio Pinelli, and Francesco Calabrese. 2013. ABACUS: Frequent pAttern mining-based community discovery in multidimensional networks. Data Mining and Knowledge Discovery 27, 3 (2013), 294--320.
[7]
Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008.
[8]
Brigitte Boden, Stephan Günnemann, Holger Hoffmann, and Thomas Seidl. 2012. Mining coherent subgraphs in multi-layer graphs with edge labels. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’2012). 1258--1266.
[9]
Christian Borgelt. 2003. Efficient implementations of apriori and eclat. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI’2003).
[10]
Mohamed Bouguessa, Shengrui Wang, and Benoit Dumoulin. 2010. Discovering knowledge-sharing communities in question-answering forums. ACM Transactions on Knowledge Discovery from Data 5, 1, Article 3 (Dec 2010), 49 pages.
[11]
Deng Cai, Zheng Shao, Xiaofei He, Xifeng Yan, and Jiawei Han. 2005. Mining hidden community in heterogeneous social networks. In Proceedings of the 3rd ACM SIGKDD International Workshop on Link Discovery (LinkKDD’2005). 58--65.
[12]
Vincenza Carchiolo, Alessandro Longheu, Michele Malgeri, and Giuseppe Mangioni. 2011. Communities unfolding in multislice networks. In Complex Networks. Communications in Computer and Information Science. Springer, 187--195.
[13]
Jingchun Chen and Bo Yuan. 2006. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22, 18 (2006), 2283--2290.
[14]
Anne Condon and Richard M. Karp. 2001. Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms 18, 2 (2001), 116--140.
[15]
Michele Coscia, Fosca Giannotti, and Dino Pedreschi. 2011. A classification for community discovery methods in complex networks. Statistical Analysis and Data Mining: The ASA Data Science Journal 4, 5 (2011), 512--546.
[16]
Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi. 2014. Uncovering hierarchical and overlapping communities with a local-first approach. ACM Transactions on Knowledge Discovery from Data 9, 1, Article 6 (Aug. 2014), 27 pages.
[17]
Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall. 2015. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Physical Review X 5, 1 (2015), 011027.
[18]
Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. 2015. Structural reducibility of multilayer networks. Nature Communications 6 (2015).
[19]
Manlio De Domenico, Albert Sole, Sergio Gomez, and Alex Arenas. 2014. Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences of the United States of America 111, 23, 8351--8356.
[20]
Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefedov. 2012. Clustering with multi-layer graphs: A spectral perspective. IEEE Transactions on Signal Processing 60, 11 (2012), 5820--5831.
[21]
Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefedov. 2014. Clustering on multi-layer graphs via subspace analysis on grassmann manifolds. IEEE Transactions on Signal Processing 62, 4 (2014), 905--918.
[22]
Daniel M. Dunlavy, Tamara G. Kolda, and W. Philip Kegelmeyer. 2011. Multilinear algebra for analyzing data with multiple linkages. In Graph Algorithms in the Language of Linear Algebra. J. Kepner and J. Gilbert (Eds.), Fundamentals of Algorithms, SIAM, Philadelphia (2011), 85--114.
[23]
Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (2010), 75--174.
[24]
Edward B. Fowlkes and Colin L. Mallows. 1983. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association 78, 383 (1983), 553--569.
[25]
A. Graovac, I. Gutman, N. Trinajstić, and T. Živković. 1972. Graph theory and molecular orbitals. Theoretica Chimica Acta 26, 1 (1972), 67--78.
[26]
Manel Hmimida and Rushed Kanawati. 2015. Community detection in multiplex networks: A seed-centric approach. Networks and Heterogeneous Media 10, 1 (2015), 71--85.
[27]
Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal of Classification 2, 1 (1985), 193--218.
[28]
Przemyslaw Kazienko, Katarzyna Musial, Elzbieta Kukla, Tomasz Kajdanowicz, and Piotr Brodka. 2011. Multidimensional social network: Model and analysis. In Computational Collective Intelligence. Technologies and Applications. Lecture Notes in Computer Science, vol. 6922, Springer, 378--387.
[29]
Tamara G. Kolda and Brett W. Bader. 2009. Tensor decompositions and applications. SIAM Review 51, 3 (2009), 455--500.
[30]
Jeremy Kun, Rajmonda Caceres, and Kevin Carter. 2014. Locally boosted graph aggregation for community detection. arXiv preprint arXiv:1405.3210.
[31]
Zhana Kuncheva and Giovanni Montana. 2015. Community detection in multiplex networks using locally adaptive random walks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’2015). ACM, 1308--1315.
[32]
Renaud Lambiotte, J.-C. Delvenne, and Mauricio Barahona. 2014. Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks. IEEE Transactions on Network Science and Engineering 1, 2 (2014), 76--90.
[33]
Ian X. Y. Leung, Pan Hui, Pietro Lio, and Jon Crowcroft. 2009. Towards real-time community detection in large networks. Physical Review E 79, 6 (2009), 066107.
[34]
Xutao Li, Michael K. Ng, and Yunming Ye. 2014. Multicomm: Finding community structure in multi-dimensional networks. IEEE Transactions on Knowledge and Data Engineering 26, 4 (2014), 929--941.
[35]
Guimei Liu and Limsoon Wong. 2008. Effective pruning techniques for mining quasi-cliques. In Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, Springer, 33--49.
[36]
Muhuo Liu and Bolian Liu. 2009. New sharp upper bounds for the first Zagreb index. Communications in Mathematical and in Computer Chemistry 62, 3 (2009), 689--698.
[37]
Xinhai Liu, Shuiwang Ji, Wolfgang Glanzel, and Bart De Moor. 2013. Multiview partitioning via tensor methods. IEEE Transactions on Knowledge and Data Engineering 25, 5 (2013), 1056--1069.
[38]
Xin Liu and Tsuyoshi Murata. 2010. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A: Statistical Mechanics and Its Applications 389, 7 (2010), 1493--1500.
[39]
Chuan Wen Loe and Henrik Jeldtoft Jensen. 2015. Comparison of communities detection algorithms for multiplex. Physica A: Statistical Mechanics and Its Applications 431 (2015), 29--45.
[40]
Matteo Magnani, Barbora Micenkova, and Luca Rossi. 2013. Combinatorial analysis of multiple networks. arXiv preprint arXiv:1303.4986.
[41]
Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press.
[42]
Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and Jukka-Pekka Onnela. 2010. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 5980 (2010), 876--878.
[43]
Mark E. J. Newman. 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103, 23 (2006), 8577--8582.
[44]
Vincenzo Nicosia and Vito Latora. 2015. Measuring and modelling correlations in multiplex networks. Physical Review E 92, 3 (2015), 032805.
[45]
Evangelos E. Papalexakis, Leman Akoglu, and D. Ience. 2013. Do more views of a graph help? Community detection and clustering in multi-graphs. In Proceedings of the16th IEEE International Conference on Information Fusion (FUSION’2013). 899--905.
[46]
Pascal Pons and Matthieu Latapy. 2005. Computing communities in large networks using random walks. In Computer and Information Sciences-ISCIS 2005. Lecture Notes in Computer Science, vol. 3733, Springer, 284--293.
[47]
Usha Nandini Raghavan, Rèka Albert, and Soundar Kumara. 2007. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E 76, 3 (2007), 036106.
[48]
Martin Rosvall and Carl T. Bergstrom. 2008. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences 105, 4 (2008), 1118--1123.
[49]
Sucheta Soundarajan and John E. Hopcroft. 2015. Use of local group information to identify communities in networks. ACM Transactions on Knowledge Discovery from Data 9, 3, Article 21 (April 2015), 27 pages.
[50]
Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike Tyers. 2006. BioGRID: A general repository for interaction datasets. Nucleic Acids Research 34, suppl 1 (2006), D535--D539.
[51]
Alexander Strehl and Joydeep Ghosh. 2003. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3 (2003), 583--617.
[52]
Lei Tang, Xufei Wang, and Huan Liu. 2009. Uncoverning groups via heterogeneous interaction analysis. In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM’2009). 503--512.
[53]
Lei Tang, Xufei Wang, and Huan Liu. 2012. Community detection via heterogeneous interaction analysis. Data Mining and Knowledge Discovery 25, 1 (2012), 1--33.
[54]
Wei Tang, Zhengdong Lu, and Inderjit S. Dhillon. 2009. Clustering with multiple graphs. In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM’2009). 1016--1021.
[55]
Aidong Zhang. 2009. Protein Interaction Networks: Computational Analysis. Cambridge University Press.

Cited By

View all
  • (2024)Multiplex Community Detection in Social Networks Using a Chaos-Based Hybrid Evolutionary ApproachComplexity10.1155/2024/10160862024Online publication date: 1-Jan-2024
  • (2024)Hierarchical Aggregations for High-Dimensional Multiplex Graph EmbeddingIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.330580936:4(1624-1637)Online publication date: 1-Apr-2024
  • (2024)Community Detection in Multiplex Networks Based on Orthogonal Nonnegative Matrix Tri-FactorizationIEEE Access10.1109/ACCESS.2024.335170912(6423-6436)Online publication date: 2024
  • Show More Cited By

Index Terms

  1. Mining Community Structures in Multidimensional Networks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Knowledge Discovery from Data
    ACM Transactions on Knowledge Discovery from Data  Volume 11, Issue 4
    Special Issue on KDD 2016 and Regular Papers
    November 2017
    419 pages
    ISSN:1556-4681
    EISSN:1556-472X
    DOI:10.1145/3119906
    • Editor:
    • Jie Tang
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 June 2017
    Accepted: 01 April 2017
    Revised: 01 October 2016
    Received: 01 December 2015
    Published in TKDD Volume 11, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Data mining
    2. community detection
    3. social networks

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Natural Sciences and Engineering Research Council of Canada (NSERC)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)31
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Multiplex Community Detection in Social Networks Using a Chaos-Based Hybrid Evolutionary ApproachComplexity10.1155/2024/10160862024Online publication date: 1-Jan-2024
    • (2024)Hierarchical Aggregations for High-Dimensional Multiplex Graph EmbeddingIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.330580936:4(1624-1637)Online publication date: 1-Apr-2024
    • (2024)Community Detection in Multiplex Networks Based on Orthogonal Nonnegative Matrix Tri-FactorizationIEEE Access10.1109/ACCESS.2024.335170912(6423-6436)Online publication date: 2024
    • (2024)Could free-floating bikeshare weed out station-based bikeshare? Analyzing the relationship between two bikeshare systems from bivariate flow clusteringJournal of Transport Geography10.1016/j.jtrangeo.2024.103941118(103941)Online publication date: Jun-2024
    • (2024)A novel local alignment algorithm for Multilayer networksInformatics in Medicine Unlocked10.1016/j.imu.2023.10142544(101425)Online publication date: 2024
    • (2024)Multilayer Biological Networks: Analysis AlgorithmsReference Module in Life Sciences10.1016/B978-0-323-95502-7.00189-5Online publication date: 2024
    • (2023)Efficient community detection in multilayer networks using boolean compositionsFrontiers in Big Data10.3389/fdata.2023.11447936Online publication date: 23-Aug-2023
    • (2023)Modeling Regime Shifts in Multiple Time SeriesACM Transactions on Knowledge Discovery from Data10.1145/359285717:8(1-31)Online publication date: 28-Jun-2023
    • (2023)MEGA: Explaining Graph Neural Networks with Network Motifs2023 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN54540.2023.10191684(1-9)Online publication date: 18-Jun-2023
    • (2023)A graph-enhanced attention model for community detection in multiplex networksExpert Systems with Applications10.1016/j.eswa.2023.120552230(120552)Online publication date: Nov-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media