Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Perceptual Lightness Modeling for High-Dynamic-Range Imaging

Published: 27 July 2017 Publication History

Abstract

The human visual system (HVS) non-linearly processes light from the real world, allowing us to perceive detail over a wide range of illumination. Although models that describe this non-linearity are constructed based on psycho-visual experiments, they generally apply to a limited range of illumination and therefore may not fully explain the behavior of the HVS under more extreme illumination conditions. We propose a modified experimental protocol for measuring visual responses to emissive stimuli that do not require participant training, nor requiring the exclusion of non-expert participants. Furthermore, the protocol can be applied to stimuli covering an extended luminance range. Based on the outcome of our experiment, we propose a new model describing lightness response over an extended luminance range. The model can be integrated with existing color appearance models or perceptual color spaces. To demonstrate the effectiveness of our model in high dynamic range applications, we evaluate its suitability for dynamic range expansion relative to existing solutions.

Supplementary Material

a1-abebe-supp.pdf (abebe.zip)
Supplemental movie, appendix, image and software files for, Perceptual Lightness Modeling for High-Dynamic-Range Imaging

References

[1]
Mekides Assefa Abebe, Tania Pouli, and Jonathan Kervec. 2015. Evaluating the color fidelity of ITMOs and HDR color appearance models. ACM Trans. Appl. Percept. 12, 4 (2015), 14:1--14:16.
[2]
Mekides Assefa Abebe, Tania Pouli, Jonathan Kervec, and Chaker Larabi. 2015. Color clipping and over-exposure correction. In Eurographics Symposium on Rendering—Experimental Ideas 8 Implementations, Jaakko Lehtinen and Derek Nowrouzezahrai (Eds.). The Eurographics Association.
[3]
Ahmet Akyüz, Roland Fleming, Bernhard Riecke, Erik Reinhard, and Heinrich Bülthoff. 2007. Do HDR displays support SDR content?: A psychophysical evaluation. ACM Trans. Graph. 26, 3 (2007), 38.
[4]
Tunc O. Aydin, Rafal Mantiuk, and Hans-Peter Seidel. 2008. Extending quality metrics to full luminance range images. Proc. SPIE 6806 (2008), 68060B--68060B--10.
[5]
Francesco Banterle, Alessandro Artusi, Kurt Debattista, and Alan Chalmers. 2011. Advanced High Dynamic Range Imaging: Theory and Practice. AK Peters (CRC Press), Natick, MA.
[6]
Francesco Banterle, Alan Chalmers, and Roberto Scopigno. 2013. Real-time high fidelity inverse tone mapping for low dynamic range content. In Eurographics 2013-Short Papers. The Eurographics Association, 41--44.
[7]
Francesco Banterle, Kurt Debattista, Alessandro Artusi, Sumanta Pattanaik, Karol Myszkowski, Patrick Ledda, and Alan Chalmers. 2009. High dynamic range imaging and low dynamic range expansion for generating HDR content. Comput. Graph. Forum 28, 8 (2009), 2343--2367.
[8]
Francesco Banterle, Patrick Ledda, Kurt Debattista, Alessandro Artusi, Marina Bloj, and Alan Chalmers. 2009. A psychophysical evaluation of inverse tone mapping techniques. Comput. Graph. Forum 28, 1 (2009), 13--25.
[9]
Kuo-Hao Chang. 2012. Stochastic nelder-mead simplex method—A new globally convergent direct search method for simulation optimization. Eur. J. Operat. Res. 220, 3 (2012), 684--694. http://dblp.uni-trier.de/db/journals/eor/eor220.html#Chang12
[10]
Ping-Hsu Chen. 2011. Scaling Lightness Perception and Differences Above and Below Diffuse White and Modifying Color Spaces for High-Dynamic-Range Scenes and Images. Master’s thesis. Rochester Institute of Tecnology.
[11]
Ping-Hsu Chen, Mark D. Fairchild, and Roy S. Berns. 2010. Scaling lightness perception and differences above and below diffuse white. In Proceedings of the 18th IS8T Color and Imaging Conference. 42--48.
[12]
CIE. 1998. The CIE 1997 Interim Colour Appearance Model (Simple Version), CIECAM97s. Technical Report. CIE Pub. 131.
[13]
Scott Daly, Timo Kunkel, Xing Sun, Suzanne Farrell, and Poppy Crum. 2013. Preference limits of the visual dynamic range for ultra high quality and aesthetic conveyance. In Proceedings of the International Society for Optics and Photonics IS8T/SPIE Electronic Imaging Conference. 86510J--86510J.
[14]
Partha Deb and Martin Sefton. 1996. The distribution of a lagrange multiplier test of normality. Econ. Lett. 51, 2 (1996), 123--130.
[15]
M. D. Fairchild. 2001. Revision of CIECAM97s for practical applications. Color Res. Appl. 26 (2001), 418--427.
[16]
M. D. Fairchild. 2005. Color Appearance Models (2nd ed.). John Wiley 8 Sons, Chichester, UK.
[17]
M. D. Fairchild. 2007. The HDR photographic survey. In Proceedings of the F15th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Vol. 15. The Society for Imaging Science and Technology, 233--238.
[18]
M. D. Fairchild and G M Johnson. 2004. The iCAM framework for image appearance, differences, and quality. Journal of Electronic Imaging 13, 1 (2004), 126--138.
[19]
Mark D. Fairchild and David R. Wyble. 2010. hdr-CIELAB and hdr-IPT: Simple models for describing the color of high-dynamic-range and wide-color-gamut images. In Proceedings of the 18th IS8T Color and Imaging Conference. 322--326.
[20]
Alan Gilchrist. 2006. Seeing Black and White. Oxford University Press.
[21]
Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern Recognition. IEEE Computer Society, 2366--2369.
[22]
R. W. G. Hunt. 1952. Light and dark adaptation and the perception of color. J. Opt. Soc. Am. 42, 3 (1952), 190--199.
[23]
R W G Hunt and M R Luo. 1997. The structure of the CIECAM97 colour appearance model (CIECAM97s). In Proceedings of the CIE Expert Symposium. Scottsdale.
[24]
ITU. 1990. International Telecommunication Union ITU-R Recommendation BT.709. Basic Parameter Values for the HDTV Standard for the Studio and for International Programme Exchange. Geneva.
[25]
Carlos M. Jarque and Anil K. Bera. 1987. A test for normality of observations and regression residuals. Int. Stat. Rev. (1987), 163--172.
[26]
G. Jewell and M. E. McCourt. 2000. Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38, 1 (2000), 93--100.
[27]
Min H. Kim. 2010. High-Fidelity Colour Reproduction for High-Dynamic-Range Imaging. Ph.D. Dissertation. University College London.
[28]
Min H. Kim, Tim Weyrich, and Jan Kautz. 2009. Modeling human color perception under extended luminance levels. ACM Trans. Graph. (Proc. SIGGRAPH 2009) 28, 3 (2009), 27:1--9.
[29]
F. Kozamernik, V. Steinmann, P. Sunna, and E. Wyckens. 2005. SAMVIQ8mdash;A new EBU methodology for video quality evaluations in multimedia. SMPTE Motion Imag. J. 114, 4 (2005), 152--160.
[30]
John Kuang and Mark D. Fairchild. 2007. iCAM06, HDR, and image appearance. Proceedings of the 15th IS8T/SID Color Imaging Conference (2007), 249--254.
[31]
Jiangtao Kuang, Garrett M. Johnson, and Mark D. Fairchild. 2007. iCAM06: A refined image appearance model for HDR image rendering. J. Vis. Commun. Image Repr. 18, 5 (2007), 406--414. Special issue on High Dynamic Range Imaging.
[32]
M. Ronnier Luo, Anthony A. Clarke, Peter A. Rhodes, André Schappo, Stephen A. R. Scrivener, and Chris J. Tait. 1991. Quantifying colour appearance. Part I.: Lutchi colour appearance data. Color Res. Appl. 16, 3 (1991), 166--180.
[33]
Laurence T. Maloney and Joong Nam Yang. 2003. Maximum likelihood difference scaling. J. Vis. 3, 8 (2003), 5. arXiv:/data/Journals/JOV/933596/jov-3-8-5.pdf
[34]
Rafal Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30, 4 (2011), 40:1--40:14.
[35]
A. D. Milner, M. Brechman, and L. Pagliarini. 1992. To halve and to halve not: An analysis of line bisection judgements in normal subjects. Neuropsychologia 30, 6 (1992), 515--526.
[36]
N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. J. Li, M. R. Luo, and T. Newman. 2002. The CIECAM02 color appearance model. In Proceedings of the 10th IS8T Color Imaging Conference. 23--27.
[37]
A. E. O. Munsell, L. L. Sloan, and I. H. Godlove. 1933. Neutral value scales, I, Munsell neutral value scale. J. Opt. Soc. Am. 23, 11 (1933), 394--402.
[38]
Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto. 1990. Color-appearance model and chromatic adaptation transform. Color Res. Appl. 15 (1990), 210--221.
[39]
OSA. 1973. Psychological Concepts: Perceptual and Affective Aspects of Color. The Optical Society of America, 145--171.
[40]
Tania Pouli, Erik Reinhard, and Douglas Cunningham. 2013. Image Statistics in Visual Computing. A K Peters/CRC Press, Boca Raton, FL.
[41]
Ana Radonjić, Sarah R. Allred, Alan L. Gilchrist, and David H. Brainard. 2011. The dynamic range of human lightness perception. Curr. Biol. 21, 22 (2011), 1931--1936.
[42]
E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski. 2010. High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (2nd ed.). Morgan Kaufmann.
[43]
E. Reinhard, T. Pouli, T. Kunkel, B. Long, A. Ballestad, and G. Damberg. 2012. Calibrated image appearance reproduction. ACM Trans. Graph. 31, 6 (2012), 201.
[44]
Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. 21, 3 (2002), 267--276.
[45]
Allan G. Rempel, Matthew Trentacoste, Helge Seetzen, H. David Young, Wolfgang Heidrich, Lorne Whitehead, and Greg Ward. 2007. Ldr2Hdr: On-the-fly reverse tone mapping of legacy video and photographs. ACM Trans. Graph. 26, 3 (2007), 39.
[46]
Gaurav Sharma. 2003. Digital Color Imaging Handbook. CRC Press, Boca Raton, FL.
[47]
M. Sugawara, S. Y. Choi, and D. Wood. 2014. Ultra-high-definition television (Rec. ITU-R BT.2020): A generational leap in the evolution of television [standards in a nutshell]. IEEE Sign. Process. Mag. 31, 3 (May 2014), 170--174.
[48]
Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image PRrocess. 13, 4 (2004), 600--612.
[49]
Christiane B. Wiebel, Matteo Toscani, and Karl R. Gegenfurtner. 2015. Statistical correlates of perceived gloss in natural images. Vis. Res. 115, Part B (2015), 175--187. Perception of Material Properties (Part II).
[50]
G. Wyszecki and W. S. Stiles. 2000. Color Science: Concepts and Methods, Quantitative Data and Formulae (2nd ed.). John Wiley 8 Sons, New York, NY.
[51]
Gunter Wyszecki and W. S. Walter Stanley Stiles. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York, NY.
[52]
Xuemei Zhang, B. A. Wandell, D. A. Silverstein, and J. E. Farrell. 1997. Color image quality metric S-CIELAB and its application on halftone texture visibility. In IEEE COMPCON Symposium Digest. 44--48.
[53]
Xuemei Zhang and Brian A. Wandell. 1997. A spatial extension of CIELAB for digital color image reproduction. SID J. 5, 1 (1997), 61--63.

Cited By

View all
  • (2021)Research on Dynamic Range Analysis and Improvement of Imaging Equipment2021 Workshop on Algorithm and Big Data10.1145/3456389.3456392(40-44)Online publication date: 12-Mar-2021
  • (2020)Infrared Image Adaptive Enhancement Guided by Energy of Gradient Transformation and Multiscale Image FusionApplied Sciences10.3390/app1018626210:18(6262)Online publication date: 9-Sep-2020
  • (2020)Blind Quality Assessment for High Dynamic Range Video SystemsProceedings of the 2020 4th International Conference on Computer Science and Artificial Intelligence10.1145/3445815.3445848(201-206)Online publication date: 11-Dec-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Applied Perception
ACM Transactions on Applied Perception  Volume 15, Issue 1
January 2018
122 pages
ISSN:1544-3558
EISSN:1544-3965
DOI:10.1145/3128284
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2017
Accepted: 01 March 2017
Revised: 01 March 2017
Received: 01 July 2016
Published in TAP Volume 15, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ITMO
  2. Lightness modeling
  3. color appearance modeling
  4. high dynamic range imaging
  5. psycho-visual experiment

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)2
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Research on Dynamic Range Analysis and Improvement of Imaging Equipment2021 Workshop on Algorithm and Big Data10.1145/3456389.3456392(40-44)Online publication date: 12-Mar-2021
  • (2020)Infrared Image Adaptive Enhancement Guided by Energy of Gradient Transformation and Multiscale Image FusionApplied Sciences10.3390/app1018626210:18(6262)Online publication date: 9-Sep-2020
  • (2020)Blind Quality Assessment for High Dynamic Range Video SystemsProceedings of the 2020 4th International Conference on Computer Science and Artificial Intelligence10.1145/3445815.3445848(201-206)Online publication date: 11-Dec-2020
  • (2019)CAM-based HDR image reproduction using CA–TC decoupled JCh decompositionSignal Processing: Image Communication10.1016/j.image.2018.08.01070(1-13)Online publication date: Feb-2019
  • (2018)Age‐dependent prediction of visible differences in displayed imagesJournal of the Society for Information Display10.1002/jsid.62326:1(4-13)Online publication date: 8-Feb-2018

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media