Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3097983.3098194acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Multi-view Learning over Retinal Thickness and Visual Sensitivity on Glaucomatous Eyes

Published: 13 August 2017 Publication History

Abstract

Dense measurements of visual-field, which is necessary to detect glaucoma, is known as very costly and labor intensive. Recently, measurement of retinal-thickness can be less costly than measurement of visual-field. Thus, it is sincerely desired that the retinal-thickness could be transformed into visual-sensitivity data somehow. In this paper, we propose two novel methods to estimate the sensitivity of the visual-field with SITA-Standard mode 10-2 resolution using retinal-thickness data measured with optical coherence tomography (OCT). The first method called Affine-Structured Non-negative Matrix Factorization (ASNMF) which is able to cope with both the estimation of visual-field and the discovery of deep glaucoma knowledge. While, the second is based on Convolutional Neural Networks (CNNs) which demonstrates very high estimation performance. These methods are kinds of multi-view learning methods because they utilize visual-field and retinal thickness data simultaneously. We experimentally tested the performance of our methods from several perspectives. We found that ASNMF worked better for relatively small data size while CNNs did for relatively large data size. In addition, some clinical knowledge are discovered via ASNMF. To the best of our knowledge, this is the first paper to address the dense estimation of the visual-field based on the retinal-thickness data.

References

[1]
C. Ajtony, Z. Balla, S. Somoskeoy, and B. Kovacs. "Relationship between Visual Field Sensitivity and Retinal Nerve Fiber Layer Thickness as Measured by Optical Coherence Tomography", Invest. Ophth. Vis. Sci. 48(1), p. 258, 2007.
[2]
R. Asaoka. "The relationship between visual acuity and central visual field sensitivity in advanced glaucoma." Brit. J. Ophthalmol. 97(10), pp. 1355--1356, 2013.
[3]
A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Nonnegative Matrix and Tensor Factorizations, John Wiley & Son, 2009.
[4]
C. Cortes and V. Vapnik. "Support vector networks", Machine Learning 20(3):273--297, 1995.
[5]
M. Eura, "Correspondence Between Visual Field Test Results and GCL+IPL Thickness in the Maculae of Glaucomatous Eyes", Ph.D. Thesis, Kinki University, 2014 (written in Japanese).
[6]
R. Girshick, J. Donahue, T. Darrell, and J. Malik. "Rich feature hierarchies for accurate object detection and semantic segmentation", In CVPR, pp. 580--587, 2014.
[7]
X. Glorot and Y. Bengio. "Understanding the difficulty of training deep feedforward neural networks", In AISTATS Vol. textbf9, pp. 249--256, 2010.
[8]
M. Higaki, K. Morino, H. Murata, R. Asaoka, and K. Yamanishi, "Predicting Glaucoma Visual Field Loss by Hierarchically Aggregating Clustering-based Predictors," arXiv:1603.07094, 2016.
[9]
C. Holmin and C. E. T. Krakau, "Regression analysis of the central visual field in chronic glaucoma cases", Acta Ophthalmologica 60(2), pp. 267 -- 274, 1982.
[10]
D. C. Hood and R. H. Kardon. "A framework for comparing structural and functional measures of glaucomatous damage", Progress in Retinal and Eye Research 26(6), pp. 688--710, 2007.
[11]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. "Optical coherence tomography", Science 254(5035), pp. 1178--1181, 1991.
[12]
S. Izumi, S. Shiroaki, S. Matsumoto, and M. Araie. "The relationship between visual disability and visual field in patients with glaucoma". Ophthalmology textbf110(2), pp. 332--339, 2003.
[13]
A. Kanamori, M. Nakamura, M. F.T Escano, R. Seya, H. Maeda, and A. Negi. "Evaluation of the Glaucomatous Damage on Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography". Am. J. Ophthalmol. 135(4), pp. 513--520, 2003.
[14]
S. Kingman. "Glaucoma is second leading cause of blindness globally", B. World health Organ. 82(11), pp. 887--888, 2004.
[15]
Y. Kita, R. Kita, A. Takeyama, A. Anraku, G. Tomita, and I. Goldberg. "Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study", Clinical & Experimental Ophthalmology 41(7), pp. 674--682, 2013.
[16]
A. Krizhevsky, I. Sutskever, and G. E. Hinton. "Imagenet classification with deep convolutional neural networks", In NIPS, pp. 1097--1105, 2012.
[17]
H. Laurberg and L. K. Hansen. "On Affine Non-Negative Matrix Factorization", In ICASSP 2007, Vol. II, pp. 653 - 656, 2007.
[18]
H. Laurberg, M. N. Schmidt, M. G. Christensen, and S. H. Jensen, "Structured non-negative matrix factorization with sparsity patterns", in ASILOMAR 2008, pp.1693--1697, 2008.
[19]
D. D. Lee and H. S. Seung. "Algorithms for Non-negative Matrix Factorization", in NIPS, pp. 556--562, 2000.
[20]
Z. Liang, R. Tomioka, H. Murata, R. Asaoka, and K. Yamanishi. "Quantitative Prediction of Glaucomatous Visual Field Loss from Few Measurements", in ICDM2013, pp. 1121--1126, 2013.
[21]
M. Lin, Q. Chen, and S. Yan. "Network in Network.", arXiv:1312.4400, 2013.
[22]
J. Liu, C. Wang, J. Gao, and J. Han. "Multi-View Clustering via Joint Non-negative Matrix Factorization", in SDM2013, pp. 252--260, 2013.
[23]
S. Maya, K. Morino, H. Murata, R. Asaoka, and K. Yamanishi. "Discovery of Glaucoma Progressive Patterns Using Hierarchical MDL-Based Clustering", in KDD 2015, pp. 1979--1988, 2015.
[24]
S. Maya, K. Morino, and K. Yamanishi, "Predicting Glaucoma Progression using Multi-task Learning with Heterogeneous Features", in IEEE BigData 2014, pp. 261--270, 2014.
[25]
J. Nayak, R. Acharya U., P. S. Bhat, N. Shetty, and T. C. Lim. "Automated Diagnosis of Glaucoma Using Digital Fundus Images", Journal of Medical Systems 33(5), pp. 337--346, 2009.
[26]
B. N. Noureddin, D. Poinoosawmy, F. W. Fietzke, and R. A. Hitchings. "Regression Analysis of Visual Field Progression in Low Tension Glaucoma", Brit. J. Ophthalmol. 75(8), pp. 493--495, 1991.
[27]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. "ImageNet Large Scale Visual Recognition Challenge", Int. J. Comput. Vision 115(3), pp. 211--252, 2015.
[28]
T. M. Shaarawy, M. B. Sherwood, R. A. Hitchings, and J. G. Crowston. GLAUCOMA MEDICAL DIAGNOSIS & THERAPY VOLUME ONE, Elsevier, 2009.
[29]
K. Simonyan and A. Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition", arXiv:1409.1556, 2015.
[30]
W. H. Swanson, J. Felius, and F. Pan. "Perimetric Defects and Ganglion Cell Damage: Interpreting Linear Relations Using a Two-Stage Neural Model", Invest. Ophth. Vis. Sci. 45(2), p. 466, 2004.
[31]
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going Deeper with Convolutions", in CVPR, pp. 1--9, 2015.
[32]
K. Tomoda, K. Morino, H. Murata, R. Asaoka, and K. Yamanishi. "Predicting Glaucomatous Progression with Piecewise Regression Model from Heterogeneous Medical Data", in HEALTHINF 2016, pp. 93--104, 2016.
[33]
Y.-X. Wang and Y.-J. Zhang, "Nonnegative Matrix Factorization: A Comprehensive Review", IEEE Trans. Knowl. Data Eng. 25(6), pp. 1336--1353, 2013.
[34]
C. Xu, D. Tao, and C. Xu. "A Survey on Multi-view Learning", arXiv:1304.5634, 2013.
[35]
S. Yousefi, M. H. Goldbaum, M. Balasubramanian, T. P. Jung, R. N. Weinreb, F. A. Medeiros, L. M. Zangwill, J. M. Liebmann, C. A. Girkin, and C. Bowd. "Glaucoma Progression Detection Using Structural Retinal Nerve Fiber Layer Measurements and Functional Visual Field Points", IEEE T. Bio-med. Eng. 61(4), pp. 1143--1154, 2014.
[36]
S. Yousefi, M. H. Goldbaum, M. Balasubramanian, F. A. Medeiros, L. M. Zangwill, J. M. Liebmann, C. A. Girkin, R. N. Weinreb, and C. Bowd, "Learning From Data: Recognizing Glaucomatous Defect Patterns and Detecting Progression From Visual Field Measurements", IEEE T. Bio-med Eng. 61(7), pp. 2112- 2124, 2014.

Cited By

View all
  • (2023)Multimodal Deep Learning Model of Predicting Future Visual Field for Glaucoma PatientsIEEE Access10.1109/ACCESS.2023.324806511(19049-19058)Online publication date: 2023
  • (2021)PAMI: A Computational Module for Joint Estimation and Progression Prediction of GlaucomaProceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining10.1145/3447548.3467195(3826-3834)Online publication date: 14-Aug-2021
  • (2021)AI and GlaucomaArtificial Intelligence in Ophthalmology10.1007/978-3-030-78601-4_9(113-125)Online publication date: 14-Oct-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
August 2017
2240 pages
ISBN:9781450348874
DOI:10.1145/3097983
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 August 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. convolutional neural networks (cnns)
  2. glaucoma
  3. non-negative matrix factorization (nmf)
  4. retinal thickness

Qualifiers

  • Research-article

Funding Sources

  • JST CREST
  • JSPS KAKENHI

Conference

KDD '17
Sponsor:

Acceptance Rates

KDD '17 Paper Acceptance Rate 64 of 748 submissions, 9%;
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)1
Reflects downloads up to 10 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Multimodal Deep Learning Model of Predicting Future Visual Field for Glaucoma PatientsIEEE Access10.1109/ACCESS.2023.324806511(19049-19058)Online publication date: 2023
  • (2021)PAMI: A Computational Module for Joint Estimation and Progression Prediction of GlaucomaProceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining10.1145/3447548.3467195(3826-3834)Online publication date: 14-Aug-2021
  • (2021)AI and GlaucomaArtificial Intelligence in Ophthalmology10.1007/978-3-030-78601-4_9(113-125)Online publication date: 14-Oct-2021
  • (2019)Glaucoma Progression Prediction Using Retinal Thickness via Latent Space Linear RegressionProceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining10.1145/3292500.3330757(2278-2286)Online publication date: 25-Jul-2019
  • (2018)Estimating Glaucomatous Visual Sensitivity from Retinal Thickness with Pattern-Based Regularization and VisualizationProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining10.1145/3219819.3219866(783-792)Online publication date: 19-Jul-2018

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media