Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Horn Fragments of the Halpern-Shoham Interval Temporal Logic

Published: 11 August 2017 Publication History

Abstract

We investigate the satisfiability problem for Horn fragments of the Halpern-Shoham interval temporal logic depending on the type (box or diamond) of the interval modal operators, the type of the underlying linear order (discrete or dense), and the type of semantics for the interval relations (reflexive or irreflexive). For example, we show that satisfiability of Horn formulas with diamonds is undecidable for any type of linear orders and semantics. On the contrary, satisfiability of Horn formulas with boxes is tractable over both discrete and dense orders under the reflexive semantics and over dense orders under the irreflexive semantics but becomes undecidable over discrete orders under the irreflexive semantics. Satisfiability of binary Horn formulas with both boxes and diamonds is always undecidable under the irreflexive semantics.

References

[1]
G. Adorni, M. Maratea, L. Pandolfo, and L. Pulina. 2015. An ontology for historical research documents. In Proceedings of the 9th International Conference on Web Reasoning and Rule Systems (RR’15). LNCS Series, vol. 9209. Springer, 11--18.
[2]
J. F. Allen. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832--843.
[3]
J. F. Allen. 1984. Towards a general theory of action and time. Artif. Intell. 23, 2, 123--154.
[4]
A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, and M. Zakharyaschev. 2015a. First-order rewritability of temporal ontology-mediated queries. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). AAAI Press, 2706--2712.
[5]
A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. 2007. Temporalising tractable description logics. In Proceedings of the 20th International Symposium on Temporal Representation and Reasoning (TIME’13). IEEE, 11--22.
[6]
A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. 2013. The complexity of clausal fragments of LTL. In Proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’13). LNCS Series, vol. 8312. Springer, 35--52.
[7]
A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. 2014. A cookbook for temporal conceptual data modelling with description logics. ACM Trans. Comput. Log. 15, 3, 25:1--25:50.
[8]
A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. 2015b. Tractable interval temporal propositional and description logics. In Proceedings of the 29th Conference on Artificial Intelligence (AAAI’15). AAAI Press, 1417--1423.
[9]
P. Balbiani, J. Condotta, and L. F. del Cerro. 2002. Tractability results in the block algebra. J. Log. Comput. 12, 5, 885--909.
[10]
M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. 1996. Coalescing in temporal databases. In Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB’96). Morgan Kaufmann, 180--191.
[11]
S. Brandt, E. G. Kalayci, R. Kontchakov, V. Ryzhikov, G. Xiao, and M. Zakharyaschev. 2017. Ontology-based data access with a Horn fragment of metric temporal logic. In Proceedings of the 31st Conference on Artificial Intelligence (AAAI’17). AAAI Press, 1070--1076.
[12]
D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. 2008. Decidable and undecidable fragments of Halpern and Shoham’s interval temporal logic: towards a complete classification. In Proceedings of the 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’08). LNCS Series, vol. 5330. Springer, 590--604.
[13]
D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. 2012a. Interval temporal logics over finite linear orders: The complete picture. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI’12). Frontiers in Artificial Intelligence and Applications Series, vol. 242. IOS Press, 199--204.
[14]
D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. 2012b. Interval temporal logics over strongly discrete linear orders: the complete picture. In Proceedings of the 3rd International Symposium on Games, Automata, Logics, and Formal Verification (GANDALF’12). EPTCS Series, vol. 96. 155--168.
[15]
D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. 2015. On the complexity of fragments of the modal logic of Allen’s relations over dense structures. In Proceedings of the 9th International Conference on Language and Automata Theory and Applications (LATA’15). LNCS Series, vol. 8977. Springer, 511--523.
[16]
D. Bresolin, D. Della Monica, A. Montanari, and G. Sciavicco. 2014a. The light side of interval temporal logic: The Bernays-Schönfinkel fragment of CDT. Ann. Math. Artif. Intell. 71, 1--3, 11--39.
[17]
D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco. 2014b. Sub-propositional fragments of the interval temporal logic of Allen’s relations. In Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA’14). LNCS Series, vol. 8761. Springer, 122--136.
[18]
A. Cau, R. Hale, J. Dimitrov, H. Zedan, B. C. Moszkowski, M. Manjunathaiah, and M. Spivey. 2002. A compositional framework for hardware/software co-design. Design Autom. Emb. Syst. 6, 4, 367--399.
[19]
A. Chagrov and M. Zakharyaschev. 1997. Modal Logic. Clarendon Press, Oxford.
[20]
C.-C. Chen and I.-P. Lin. 1993. The computational complexity of satisfiability of temporal Horn formulas in propositional linear-time temporal logic. Inf. Process. Lett. 45, 3, 131--136.
[21]
C.-C. Chen and I.-P. Lin. 1994. The computational complexity of the satisfiability of modal Horn clauses for modal propositional logics. Theor. Comput. Sci. 129, 1, 95--121.
[22]
A. Cimatti, M. Roveri, and S. Tonetta. 2015. HRELTL: A temporal logic for hybrid systems. Inf. Comput. 245, 54--71.
[23]
A. G. Cohn, S. Li, W. Liu, and J. Renz. 2014. Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects. J. Artif. Intell. Res. 51, 493--532.
[24]
E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. 2001. Complexity and expressive power of logic programming. ACM Comput. Surv. 33, 3, 374--425.
[25]
A. Degtyarev, M. Fisher, and B. Konev. 2006. Monodic temporal resolution. ACM Trans. Comput. Log. 7, 108--150.
[26]
D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. 2011. Interval temporal logics: A journey. Bull. EATCS 105, 73--99.
[27]
L. Fariñas Del Cerro and M. Penttonen. 1987. A note on the complexity of the satisfiability of modal Horn clauses. J. Logic Program. 4, 1, 1--10.
[28]
D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2003. Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics Series, vol. 148. Elsevier.
[29]
D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2005a. Combining spatial and temporal logics: Expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167--243.
[30]
D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2005b. Products of ‘transitive’ modal logics. J. Symbol. Logic 70, 3, 993--1021.
[31]
D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2006. Non-primitive recursive decidability of products of modal logics with expanding domains. Ann. Pure Appl. Logic 142, 1--3, 245--268.
[32]
M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk, G. Xiao, Ö. Özçep, and R. Rosati. 2015. Optique: Zooming in on big data. IEEE Comput. 48, 3, 60--67.
[33]
S. Göller, J. Jung, and M. Lohrey. 2015. The complexity of decomposing modal and first-order theories. ACM Trans. Comput. Log. 16, 9:1--9:43.
[34]
M. C. Golumbic and R. Shamir. 1993. Complexity and algorithms for reasoning about time: A graph-theoretic approach. J. ACM 40, 5, 1108--1133.
[35]
V. Goranko and M. Otto. 2006. Model theory of modal logic. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and F. Wolter, Eds. Studies in Logic and Practical Reasoning Series, vol. 3. Elsevier, 255--325.
[36]
E. Grödel, P. G. Kolaitis, and M. Y. Vardi. 1997. On the decision problem for two-variable first-order logic. Bull. Symbol. Logic 3, 1, 53--69.
[37]
V. Gutiérrez-Basulto, J. C. Jung, and R. Kontchakov. 2016a. Temporalized EL ontologies for accessing temporal data: Complexity of atomic queries. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, (IJCAI’16). IJCAI/AAAI Press, 1102--1108.
[38]
V. Gutiérrez-Basulto, J. C. Jung, and A. Ozaki. 2016b. On metric temporal description logics. In Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016) Including Prestigious Applications of Artificial Intelligence (PAIS’16). Frontiers in Artificial Intelligence and Applications Series, vol. 285. IOS Press, 837--845.
[39]
V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider. 2014. Lightweight description logics and branching time: A troublesome marriage. In Proceedings of the 14th International Conference on the Principles of Knowledge Representation and Reasoning (KR’14). AAAI Press.
[40]
V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider. 2015. Lightweight temporal description logics with rigid roles and restricted Tboxes. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). AAAI Press, 3015--3021.
[41]
J. Halpern and Y. Shoham. 1991. A propositional modal logic of time intervals. J. ACM 38, 4, 935--962.
[42]
C. Hampson and A. Kurucz. 2015. Undecidable propositional bimodal logics and one-variable first-order linear temporal logics with counting. ACM Trans. Comput. Log. 16, 3, 27:1--27:36.
[43]
I. Hodkinson. 2006. Complexity of monodic guarded fragments over linear and real time. Ann. Pure Appl. Logic 138, 94--125.
[44]
I. Hodkinson, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2003. On the computational complexity of decidable fragments of first-order linear temporal logics. In Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and 4th International Conference on Temporal Logic (TIME ICTL’03). IEEE, 91--98.
[45]
I. Hodkinson, F. Wolter, and M. Zakharyaschev. 2000. Decidable fragments of first-order temporal logics. Ann. Pure Appl. Logic 106, 85--134.
[46]
I. Hodkinson, F. Wolter, and M. Zakharyaschev. 2002. Decidable and undecidable fragments of first-order branching temporal logics. In Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02). IEEE, 393--402.
[47]
U. Hustadt, B. Motik, and U. Sattler. 2007. Reasoning in description logics by a reduction to disjunctive datalog. J. Autom. Reas. 39, 3, 351--384.
[48]
E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M. Rezk, M. G. Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, and I. Horrocks. 2015. Ontology based access to exploration data at Statoil. In Proceedings of the 14th International Semantic Web Conf. (ISWC’15), Part II. LNCS Series, vol. 9367. Springer, 93--112.
[49]
R. Kontchakov, L. Pandolfo, L. Pulina, V. Ryzhikov, and M. Zakharyaschev. 2016. Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16). IJCAI/AAAI Press.
[50]
R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. 2014. Answering SPARQL queries over databases under OWL 2 QL entailment regime. In Proceedings of the 13th International Semantic Web Conference (ISWC’14), Part I. LNCS Series, vol. 8796. Springer, 552--567.
[51]
M. Krötzsch, S. Rudolph, and P. Hitzler. 2013. Complexities of Horn description logics. ACM Trans. Comput. Log. 14, 1, 2:1--2:36.
[52]
K. G. Kulkarni and J. Michels. 2012. Temporal features in SQL: 2011. SIGMOD Rec. 41, 3, 34--43.
[53]
A. Kurucz. 2007. Combining modal logics. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and F. Wolter, Eds. Studies in Logic and Practical Reasoning Series, vol. 3. Elsevier, 869--924.
[54]
K. Lodaya. 2000. Sharpening the undecidability of interval temporal logic. In Proceedings of the 6th Asian Computer Science Conference on Advances in Computer Science. LNCS Series, vol. 1961. Springer, 290--298.
[55]
C. Lutz, F. Wolter, and M. Zakharyaschev. 2008. Temporal description logics: A survey. In Proceedings of the 15th International Symposium on Temporal Representation and Reasoning (TIME’08). IEEE, 3--14.
[56]
J. Marcinkowski and J. Michaliszyn. 2014. The undecidability of the logic of subintervals. Fundam. Inform. 131, 2, 217--240.
[57]
M. Marx and M. Reynolds. 1999. Undecidability of compass logic. J. Logic Comput. 9, 6, 897--914.
[58]
A. Montanari, I. Pratt-Hartmann, and P. Sala. 2010a. Decidability of the logics of the reflexive sub-interval and super-interval relations over finite linear orders. In Proceedings of the 17th International Symposium on Temporal Representation and Reasoning (TIME’10). IEEE, 27--34.
[59]
A. Montanari, G. Puppis, and P. Sala. 2010b. Maximal decidable fragments of Halpern and Shoham’s modal logic of intervals. In Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP’10), Part II. LNCS Series, vol. 6199. Springer, 345--356.
[60]
A. Montanari, G. Sciavicco, and N. Vitacolonna. 2002. Decidability of interval temporal logics over split-frames via granularity. In Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA’02). LNAI Series, vol. 2424. Springer, 259--270.
[61]
B. M. Moret. 1998. The Theory of Computation. Addison-Wesley.
[62]
E. Muñoz-Velasco, M. Pelegrín-García, P. Sala, and G. Sciavicco. 2015. On coarser interval temporal logics and their satisfiability problem. In Proceedings of the 16th Conference of the Spanish Association for Artificial Intelligence (CAEPIA’15). LNCS Series, vol. 9422. Springer, 105--115.
[63]
I. Navarrete, A. Morales, G. Sciavicco, and M. A. C. Viedma. 2013. Spatial reasoning with rectangular cardinal relations—the convex tractable subalgebra. Ann. Math. Artif. Intell. 67, 1, 31--70.
[64]
L. Nguyen. 2005. On the complexity of fragments of modal logics. In Advances in Modal Logic, Vol. 5, R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, Eds. King’s College Publications, 249--268.
[65]
H. Pérez-Urbina, E. Rodríguez-Díaz, M. Grove, G. Konstantinidis, and E. Sirin. 2012. Evaluation of query rewriting approaches for OWL 2. In Proceedings of the Joint Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW’12). CEUR-WS Series, vol. 943.
[66]
A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. 2008. Linking data to ontologies. J. Data Semant. X, 133--173.
[67]
I. Pratt-Hartmann. 2005. Temporal prepositions and their logic. Artif. Intell. 166, 1--2, 1--36.
[68]
M. Reynolds and M. Zakharyaschev. 2001. On the products of linear modal logics. J. Logic Comput. 11, 6, 909--931.
[69]
M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. 2013. Ontology-based data access: Ontop of databases. In Proceedings of the 12th International Semantic Web Conference (ISWC’13). LNCS Series, vol. 8218. Springer, 558--573.
[70]
T. Schwentick and T. Zeume. 2010. Two-variable logic with two order relations. In Computer Science Logic, A. Dawar and H. Veith, Eds. LNCS Series, vol. 6247. Springer, 499--513.
[71]
J. F. Sequeda, M. Arenas, and D. P. Miranker. 2014. OBDA: Query rewriting or materialization? In practice, both! In Proceedings of the 13th International Semantic Web Conference (ISWC’14), Part I. LNCS Series, vol. 8796. Springer, 535--551.
[72]
E. Spaan. 1993. Complexity of Modal Logics. Ph.D. thesis, University of Amsterdam.
[73]
P. Terenziani and R. T. Snodgrass. 2004. Reconciling point-based and interval-based semantics in temporal relational databases: A treatment of the Telic/Atelic distinction. IEEE Trans. Knowl. Data Eng. 16, 5, 540--551.
[74]
Y. Venema. 1990. Expressiveness and completeness of an interval tense logic. Notre Dame J. Form. Logic 31, 4, 529--547.
[75]
Y. Venema. 1991. A modal logic for chopping intervals. J. Logic Comput. 1, 4, 453--476.
[76]
W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document Overview. Retrieved from http://www.w3.org/TR/owl2-overview/.
[77]
P. A. Wałȩga. 2017. Computational complexity of a hybridized Horn fragment of Halpern-Shoham logic. In Proceedings of the 7th Indian Conference on Logic and Its Applications (ICLA’17). Springer, 224--238.
[78]
P. Zhang and J. Renz. 2014. Qualitative spatial representation and reasoning in angry birds: The extended rectangle algebra. In Proceedings of the 14th International Conference on the Principles of Knowledge Representation and Reasoning (KR’14). AAAI Press.
[79]
C. Zhou and M. R. Hansen. 2004. Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer.

Cited By

View all
  • (2024)Neural-symbolic temporal decision trees for multivariate time series classificationInformation and Computation10.1016/j.ic.2024.105209(105209)Online publication date: Aug-2024
  • (2023)Computing all facts entailed by an LTL specificationProceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning10.24963/kr.2023/66(679-689)Online publication date: 2-Sep-2023
  • (2023)Interpretable land cover classification with modal decision treesEuropean Journal of Remote Sensing10.1080/22797254.2023.226273856:1Online publication date: 18-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 18, Issue 3
July 2017
273 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/3130378
  • Editor:
  • Orna Kupferman
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2017
Accepted: 01 April 2017
Revised: 01 March 2017
Received: 01 May 2016
Published in TOCL Volume 18, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Temporal logic
  2. computational complexity
  3. modal logic

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • “iTract: Islands of Tractability in Ontology-Based Data Access”
  • INDAM-GNCS project 2017 “Logics and Automata for Interval Model Checking”
  • EPSRC UK project
  • Spanish project

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)1
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Neural-symbolic temporal decision trees for multivariate time series classificationInformation and Computation10.1016/j.ic.2024.105209(105209)Online publication date: Aug-2024
  • (2023)Computing all facts entailed by an LTL specificationProceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning10.24963/kr.2023/66(679-689)Online publication date: 2-Sep-2023
  • (2023)Interpretable land cover classification with modal decision treesEuropean Journal of Remote Sensing10.1080/22797254.2023.226273856:1Online publication date: 18-Dec-2023
  • (2023)Fuzzy Halpern and Shoham's interval temporal logicsFuzzy Sets and Systems10.1016/j.fss.2022.05.014456(107-124)Online publication date: Mar-2023
  • (2023)Computational complexity of hybrid interval temporal logicsAnnals of Pure and Applied Logic10.1016/j.apal.2022.103165174:1(103165)Online publication date: Jan-2023
  • (2021)Decision Tree Learning with Spatial Modal LogicsElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.346.18346(273-290)Online publication date: 16-Sep-2021
  • (2020)Ontologies and Data Management: A Brief SurveyKI - Künstliche Intelligenz10.1007/s13218-020-00686-3Online publication date: 13-Aug-2020
  • (2019)Querying log data with metric temporal logicJournal of Artificial Intelligence Research10.1613/jair.1.1122962:1(829-877)Online publication date: 17-Apr-2019
  • (2019)Hybrid fragments of Halpern–Shoham logic and their expressive powerTheoretical Computer Science10.1016/j.tcs.2019.01.014Online publication date: Jan-2019
  • (2019)On coarser interval temporal logicsArtificial Intelligence10.1016/j.artint.2018.09.001266(1-26)Online publication date: Jan-2019
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media