Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3107411.3107429acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA

Published: 20 August 2017 Publication History
  • Get Citation Alerts
  • Abstract

    Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.

    References

    [1]
    R. P. Dickson, J. R. Erb-Downward, C. M. Freeman, N. Walker, B. S. Scales, J. M. Beck, F. J. Martinez, J. L. Curtis, V. N. Lama, and G. B. Huffnagle, "Changes in the Lung Microbiome following Lung Transplantation Include the Emergence of Two Distinct Pseudomonas Species with Distinct Clinical Associations," PLoS One, vol. 9, no. 5, p. e97214, May 2014.
    [2]
    I. Cho and M. J. Blaser, "The human microbiome: at the interface of health and disease.," Nat. Rev. Genet., vol. 13, no. 4, pp. 260--70, Mar. 2012.
    [3]
    K. J. Pflughoeft and J. Versalovic, "Human Microbiome in Health and Disease," Annu. Rev. Pathol. Mech. Dis., vol. 7, no. 1, pp. 99--122, Feb. 2012.
    [4]
    C. Gu, "Smoothing Spline ANOVA Models," 2012.
    [5]
    E. K. Ganda, R. S. Bisinotto, S. F. Lima, K. Kronauer, D. H. Decter, G. Oikonomou, Y. H. Schukken, and R. C. Bicalho, "Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin," Sci. Rep., vol. 6, no. 1, p. 37565, Dec. 2016.
    [6]
    F. Asnicar, S. Manara, M. Zolfo, D. T. Truong, M. Scholz, F. Armanini, P. Ferretti, V. Gorfer, A. Pedrotti, A. Tett, and N. Segata, "Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling.," mSystems, vol. 2, no. 1, 2017.
    [7]
    A. Y. Voigt, P. I. Costea, J. R. Kultima, S. S. Li, G. Zeller, S. Sunagawa, and P. Bork, "Temporal and technical variability of human gut metagenomes," Genome Biol., vol. 16, no. 1, p. 73, Dec. 2015.
    [8]
    J. N. Paulson, H. Talukder, and H. C. Bravo, "Longitudinal differential abundance analysis of microbial marker-gene surveys using smoothing splines," bioRxiv, p. 99457, 2017.
    [9]
    D. Luo, S. Ziebell, and L. An, "An Informative Approach on Differential Abundance Analysis for Time-course Metagenomic Sequencing Data," Bioinformatics, vol. 334, p. btw828, Jan. 2017.
    [10]
    J. N. Paulson, O. C. Stine, H. C. Bravo, and M. Pop, "Differential abundance analysis for microbial marker-gene surveys," Nat. Methods, vol. 10, no. 12, pp. 1200--1202, Sep. 2013.
    [11]
    C. Gu, "Smoothing Spline ANOVA Models: R Package gss," J. Stat. Softw., vol. 58, no. 5, pp. 1--25, 2014.
    [12]
    G. Wahba, Y. Wang, C. Gu, R. Klein, and B. Klein, "Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy?: the 1994 Neyman Memorial Lecture," Ann. Stat., vol. 23, no. 6, pp. 1865--1895, Dec. 1995.
    [13]
    M. J. Nueda, S. Tarazona, and A. Conesa, "Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series," Bioinformatics, vol. 30, no. 18, pp. 2598--2602, Sep. 2014.
    [14]
    R. Ranjan, A. Rani, A. Metwally, H. S. McGee, and D. L. Perkins, "Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing," Biochem. Biophys. Res. Commun., vol. 469, no. 4, pp. 967--977, Dec. 2015.
    [15]
    J. R. Kultima, L. P. Coelho, K. Forslund, J. Huerta-Cepas, S. S. Li, M. Driessen, A. Y. Voigt, G. Zeller, S. Sunagawa, and P. Bork, "MOCAT2: a metagenomic assembly, annotation and profiling framework," Bioinformatics, vol. 32, no. 16, pp. 2520--2523, Aug. 2016.
    [16]
    T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara, "MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads," Nucleic Acids Res., vol. 40, no. 20, pp. e155--e155, Nov. 2012.
    [17]
    D. E. Wood and S. L. Salzberg, "Kraken: ultrafast metagenomic sequence classification using exact alignments.," Genome Biol., vol. 15, no. 3, p. R46, Jan. 2014.
    [18]
    A. A. Metwally, Y. Dai, P. W. Finn, and D. L. Perkins, "WEVOTE: Weighted Voting Taxonomic Identification Method of Microbial Sequences," PLoS One, vol. 11, no. 9, p. e0163527, Sep. 2016.
    [19]
    W. Zhu, A. Lomsadze, and M. Borodovsky, "Ab initio gene identification in metagenomic sequences," Nucleic Acids Res., vol. 38, no. 12, pp. e132--e132, Jul. 2010.
    [20]
    M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa, "KEGG for representation and analysis of molecular networks involving diseases and drugs.," Nucleic Acids Res., vol. 38, no. Database issue, pp. D355--60, Jan. 2010.
    [21]
    M. Wallroth, "Normalization of metagenomic data A comprehensive evaluation of existing methods."
    [22]
    M. I. Love, W. Huber, and S. Anders, "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2," Genome Biol., vol. 15, no. 12, p. 550, Dec. 2014.
    [23]
    M. D. Robinson, D. J. McCarthy, G. K. Smyth, L. Zhang, X. Cui, A. K. Benson, N. Yi, O. Adeola, C. Nakatsu, and K. Ajuwon, "edgeR: a Bioconductor package for differential expression analysis of digital gene expression data," Bioinformatics, vol. 26, no. 1, pp. 139--140, Jan. 2010.
    [24]
    V. Jonsson, T. Österlund, O. Nerman, and E. Kristiansson, "Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics," BMC Genomics, vol. 17, no. 1, p. 78, Dec. 2016.
    [25]
    Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing on JSTOR," J. R. Stat. Soc., vol. 57, no. 1, pp. 289--300, 1995.
    [26]
    V. Erhardt, "corcounts," 2015. {Online}. Available: https://cran.r-project.org/web/packages/corcounts/corcounts.pdf. {Accessed: 22-Apr-2017}.
    [27]
    K. Faust, L. Lahti, D. Gonze, W. M. de Vos, and J. Raes, "Metagenomics meets time series analysis: unraveling microbial community dynamics.," Curr. Opin. Microbiol., vol. 25, pp. 56--66, Jun. 2015.
    [28]
    C. Chatfield, The analysis of time series: an introduction. 2016.
    [29]
    W. S. Cleveland, "Robust Locally Weighted Regression and Smoothing Scatterplots," J. Am. Stat. Assoc., vol. 74, no. 368, pp. 829--836, Dec. 1979.
    [30]
    A. D. Kostic, D. Gevers, H. Siljander, T. Vatanen, T. Hyötyläinen, A.-M. Hämäläinen, A. Peet, V. Tillmann, P. Pöhö, I. Mattila, H. Lähdesmäki, E. A. Franzosa, O. Vaarala, M. de Goffau, H. Harmsen, J. Ilonen, S. M. Virtanen, C. B. Clish, M. Orešič, C. Huttenhower, M. Knip, R. J. DIABIMMUNE Study Group, and R. J. Xavier, "The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes.," Cell Host Microbe, vol. 17, no. 2, pp. 260--73, Feb. 2015.
    [31]
    N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Huttenhower, "Metagenomic microbial community profiling using unique clade-specific marker genes.," Nat. Methods, vol. 9, no. 8, pp. 811--4, Jun. 2012.

    Cited By

    View all
    • (2022)A Survey of Statistical Methods for Microbiome Data AnalysisFrontiers in Applied Mathematics and Statistics10.3389/fams.2022.8848108Online publication date: 14-Jun-2022
    • (2018)Cloud-based solution for improving usability and interactivity of metagenomic ensemble taxonomic classification methods2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)10.1109/BHI.2018.8333403(198-201)Online publication date: Mar-2018

    Index Terms

    1. Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image ACM Conferences
          ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics
          August 2017
          800 pages
          ISBN:9781450347228
          DOI:10.1145/3107411
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Sponsors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 20 August 2017

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. differential abundance
          2. longitudinal studies
          3. metagenomics
          4. microbiome
          5. negative binomial distribution
          6. smoothing splines

          Qualifiers

          • Research-article

          Funding Sources

          Conference

          BCB '17
          Sponsor:

          Acceptance Rates

          ACM-BCB '17 Paper Acceptance Rate 42 of 132 submissions, 32%;
          Overall Acceptance Rate 254 of 885 submissions, 29%

          Upcoming Conference

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)9
          • Downloads (Last 6 weeks)1
          Reflects downloads up to

          Other Metrics

          Citations

          Cited By

          View all
          • (2022)A Survey of Statistical Methods for Microbiome Data AnalysisFrontiers in Applied Mathematics and Statistics10.3389/fams.2022.8848108Online publication date: 14-Jun-2022
          • (2018)Cloud-based solution for improving usability and interactivity of metagenomic ensemble taxonomic classification methods2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)10.1109/BHI.2018.8333403(198-201)Online publication date: Mar-2018

          View Options

          Get Access

          Login options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media