Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
chapter

Classifying multimodal data

Published: 01 October 2018 Publication History
First page of PDF

References

[1]
E. Alpaydın. 2014. Introduction to Machine Learning. 3rd edition The MIT Press. 50
[2]
E. Alpaydın and C. Kaynak. 1998. Cascading classifiers. Kybernetika, 34(3): 369--374. 56
[3]
G. Andrew, R. Arora, J. Bilmes, and K. Livescu. 2013. Deep canonical correlation analysis. In International Conference on Machine Learning, pp. 1247--1255. 64
[4]
T. Baltrusaitis, C. Ahuja, and L.-Ph. Morency. 2018. Multimodal machine learning. In S. Oviatt, B. Schuller, P. Cohen, D. Sonntag, G. Potamianos, and A. Krueger, editors, The Handbook of Multimodal-Multisensor Interfaces, Volume 2: Signal Processing, Architectures, and Detection of Emotion and Cognition. Chapter 1, Morgan & Claypool Publishers, San Rafael, CA. 53, 58
[5]
Y. Bengio. 2009. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2: 1--127. 62
[6]
L. Breiman. 1996. Bagging predictors. Machine Learning, 26: 123--140. 52
[7]
C. Cortes and V. Vapnik. 1995. Support vector networks. Machine Learning, 20: 273--297, 1995. 60
[8]
G. W. Cottrell, P. Munro, and D. Zipser. 1987. Learning internal representations from gray-scale images: An example of extensional programming. In Ninth Annual Conference of the Cognitive Science Society, pp. 462--473. 63
[9]
Y. Freund and R. E. Schapire. 1996. Experiments with a new boosting algorithm. In International Conference on Machine Learning, pp. 148--156. 52
[10]
M. Gönen and E. Alpaydin. 2008. Localized multiple kernel learning. In International Conference on Machine Learning, pp. 352--359. 62
[11]
M. Goönen and E. Alpaydin. 2011. Multiple kernel learning algorithms. Journal of Machine Learning Research, 12: 2211--2268. 61, 62
[12]
I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press. 62
[13]
S. Greengard. 2015. The Internet of Things. Essential Knowledge Series. MIT Press. 66
[14]
T. K. Ho. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20: 832--844. 53
[15]
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. 1991. Adaptive mixtures of local experts. Neural Computation, 3: 79--87. 53, 56
[16]
M. I. Jordan and R. A. Jacobs. 1994. Hierarchical mixtures of experts and the em algorithm. Neural Computation, 6(2): 181--214. 56
[17]
C. Kaynak and E. Alpaydin. 2000. Multistage cascading of multiple classifiers: One man's noise is another man's data. In International Conference on Machine Learning, pp. 455--462. 56
[18]
G. Keren, A. E. Mousa, and B. Schuller. 2018. Deep learning for multi-sensorial and multimodal interaction. In S, Oviatt, B. Schuller, P. Cohen, D. Sonntag, G. Potamianos, and A. Krueger, editors, The Handbook of Multimodal-Multisensor Interfaces, Volume 2: Signal Processing, Architectures, and Detection of Emotion and Cognition. Chapter 4, Morgan & Claypool Publishers, San Rafael, CA. 64
[19]
J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. 1998. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20: 226--239. 54
[20]
L. I. Kuncheva. 2004. Combining Pattern Classifiers: Methods and Algorithms. Wiley. 49
[21]
G. R. Lanckriet, G. N. Cristianini, P. Bartlett, L. ElGhaoui, and M. I. Jordan. 2004. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5: 27--72. 61
[22]
B. McFee and G. Lanckriet. 2011. Learning multi-modal similarity. Journal of Machine Learning Research, 12: 491--523. 64
[23]
G. Neff and D. Nafus. 2016. Self-Tracking. Essential Knowledge Series. MIT Press. 65
[24]
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. 2011. Multimodal deep learning. In International Conference on Machine Learning, pp. 689--696. 64
[25]
Y. Panagakis, O. Rudovic, and M. Pantic. 2018. Learning for multi-modal and context-sensitive interfaces. In S, Oviatt, B. Schuller, P. Cohen, D. Sonntag, G. Potamianos, and A. Krueger, editors, The Handbook of Multimodal-Multisensor Interfaces, Volume 2: Signal Processing, Architectures, and Detection of Emotion and Cognition. Chapter 3, Morgan & Claypool Publishers, San Rafael, CA. 57
[26]
K. Sohn, W. Shang, and H. Lee. 2014. Improved multimodal deep learning with variation of information. In Advances in Neural Information Processing Systems 27, pp. 2141--2149. 64
[27]
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. 2016. Large scale multiple kernel learning. Journal of Machine Learning Research, 7: 1531--1565. 61
[28]
N. Srivastava and R. Salakhutdinov. 2012. Multimodal learning with deep Boltzmann machines. In Advances in Neural Information Processing Systems 25, pp. 2222--2230. 64
[29]
N. Srivastava and R. Salakhutdinov. 2014. Multimodal learning with deep Boltzmann machines. Journal of Machine Learning Research, 15: 2949--2980. 64
[30]
A. Ulaş, M. Semerci, O. T Yildiz, and E. Alpaydin. Incremental construction of classifier and discriminant ensembles. Information Sciences, 179: 1298--1318, 2009. 59
[31]
A. Ulaş, O. T. Yildiz, and E. Alpaydin. 2012. Eigenclassifiers for combining correlated classifiers. Information Sciences, 187: 109--120. 60
[32]
P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. 2008. Extracting and composing robust features with denoising autoencoders. In International Conference on Machine Learning, pp. 1096--1103. 63
[33]
W. Wang, R. Arora, K. Livescu, and J. Bilmes. 2015. On deep multi-view representation learning. In International Conference on Machine Learning, pp. 1083--1092. 64
[34]
D. H. Wolpert. 1992. Stacked generalization. Neural Networks, 5: 241--259. 55
[35]
P. Wu, S. C. H. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao. 2013. Online multimodal deep similarity learning with application to image retrieval. In ACM International Conference on Multimedia, pp. 153--162. 64

Cited By

View all
  • (2024)An overview of face recognition methodsBIO Web of Conferences10.1051/bioconf/2024970002497(00024)Online publication date: 5-Apr-2024
  • (2020)Predictive Models for Maintenance Optimization: An Analytical Literature Survey of Industrial Maintenance StrategiesInformation Technology for Management: Current Research and Future Directions10.1007/978-3-030-43353-6_8(135-154)Online publication date: 11-Mar-2020
  1. Classifying multimodal data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Books
    The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition - Volume 2
    October 2018
    2034 pages
    ISBN:9781970001716
    DOI:10.1145/3107990

    Publisher

    Association for Computing Machinery and Morgan & Claypool

    Publication History

    Published: 01 October 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Chapter

    Appears in

    ACM Books

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)64
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)An overview of face recognition methodsBIO Web of Conferences10.1051/bioconf/2024970002497(00024)Online publication date: 5-Apr-2024
    • (2020)Predictive Models for Maintenance Optimization: An Analytical Literature Survey of Industrial Maintenance StrategiesInformation Technology for Management: Current Research and Future Directions10.1007/978-3-030-43353-6_8(135-154)Online publication date: 11-Mar-2020

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media