Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

D-Map+: Interactive Visual Analysis and Exploration of Ego-centric and Event-centric Information Diffusion Patterns in Social Media

Published: 28 November 2018 Publication History

Abstract

Information diffusion analysis is important in social media. In this work, we present a coherent ego-centric and event-centric model to investigate diffusion patterns and user behaviors. Applying the model, we propose Diffusion Map+ (D-Maps+), a novel visualization method to support exploration and analysis of user behaviors and diffusion patterns through a map metaphor. For ego-centric analysis, users who participated in reposting (i.e., resending a message initially posted by others) one central user’s posts (i.e., a series of original tweets) are collected. Event-centric analysis focuses on multiple central users discussing a specific event, with all the people participating and reposting messages about it. Social media users are mapped to a hexagonal grid based on their behavior similarities and in the chronological order of repostings. With the additional interactions and linkings, D-Map+ is capable of providing visual profiling of influential users, describing their social behaviors and analyzing the evolution of significant events in social media. A comprehensive visual analysis system is developed to support interactive exploration with D-Map+. We evaluate our work with real-world social media data and find interesting patterns among users and events. We also perform evaluations including user studies and expert feedback to certify the capabilities of our method.

References

[1]
Daniel Archambault, James Abello, Jessie Kennedy, Stephen Kobourov, Kwan-Liu Ma, Silvia Miksch, Chris Muelder, and Alexandru C. Telea. 2014. Temporal Multivariate Networks. Springer International Publishing, 151--174.
[2]
Dustin Lockhart Arendt and Leslie M. Blaha. 2014. SVEN: Informative visual representation of complex dynamic structure. CoRR abs/1412.6706 (2014). http://arxiv.org/abs/1412.6706
[3]
Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. 2016. A taxonomy and survey of dynamic graph visualization. Computer Graphics Forum (2016).
[4]
Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D<sup>3</sup> data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301--2309.
[5]
Ulrik Brandes, Martin Hoefer, and Christian Pich. 2006. Affiliation dynamics with an application to movie-actor biographies. In EuroVis06: Joint Eurographics - IEEE VGTC Symposium on Visualization, Lisbon. 179--186.
[6]
Rafael G. Cano, Kevin Buchin, Thom Castermans, Astrid Pieterse, Willem Sonke, and Bettina Speckmann. 2015. Mosaic drawings and cartograms. Computer Graphics Forum 34, 3 (2015), 361--370.
[7]
Nan Cao, Yu-Ru Lin, Xiaohua Sun, David Lazer, Shixia Liu, and Huamin Qu. 2012. Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2649--2658.
[8]
N. Cao, Y. R. Lin, F. Du, and D. Wang. 2015. Episogram: Visual summarization of egocentric social interactions. IEEE Computer Graphics and Applications PP, 99 (2015), 1--1.
[9]
Nan Cao, Yu-Ru Lin, and David Gotz. 2016. Untangle map: Visual analysis of probabilistic multi-label data. IEEE Transactions on Visualization and Computer Graphics 22, 2 (2016), 1149--1163.
[10]
Nan Cao, Lu Lu, Yu-Ru Lin, Fei Wang, and Zhen Wen. 2015. SocialHelix: Visual analysis of sentiment divergence in social media. Journal of Visualization 18, 2 (2015), 221--235.
[11]
Nan Cao, Conglei Shi, W. Sabrina Lin, Jie Lu, Yu-Ru Lin, and Ching-Yung Lin. 2016. TargetVue: Visual analysis of anomalous user behaviors in online communication systems. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 280--289.
[12]
N. Cao, J. Sun, Y. R. Lin, D. Gotz, S. Liu, and H. Qu. 2010. FacetAtlas: Multifaceted visualization for rich text corpora. IEEE Transactions on Visualization and Computer Graphics 16, 6 (Nov 2010), 1172--1181.
[13]
Daniel B. Carr, Richard J. Littlefield, and Wesley L. Nichloson. 1986. Scatterplot matrix techniques for large N. In JASA. 297--306.
[14]
Meeyoung Cha, Hamed Haddadi, Fabrício Benevenuto, and P. Krishna Gummadi. 2010. Measuring user influence in twitter: The million follower fallacy. In Proceedings of the Fourth International Conference on Weblogs and Social Media (ICWSM’10), Washington, DC. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/view/1538
[15]
Siming Chen, Shuai Chen, Zhenhuang Wang, Jie Liang, Xiaoru Yuan, Nan Cao, and Yadong Wu. 2016. D-map: Visual analysis of ego-centric information diffusion patterns in social media. In Proceedings of IEEE Visual Analytics Science and Technology (VAST16), Baltimore, MD. 41--50.
[16]
Siming Chen, Lijing Lin, and Xiaoru. 2017. Social media visual analytics. Computer Graphics Forum 36, 3 (2017), 563--587.
[17]
Siming Chen, Xiaoru Yuan, Zhenhuang Wang, Cong Guo, Jie Liang, Zuchao Wang, Jiawan Zhang, and Xiaolong Zhang. 2015. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2015), 270--279.
[18]
Weiwei Cui, Shixia Liu, Zhuofeng Wu, and Hao Wei. 2014. How hierarchical topics evolve in large text corpora. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 2281--2290.
[19]
Tuan Nhon Dang, Nick Pendar, and Angus Forbes. 2016. TimeArcs: Visualizing fluctuations in dynamic networks. Computer Graphics Forum 35, 3 (2016), 61--69.
[20]
Michele Emmer. 2005. The Visual Mind II (Leonardo Books). The MIT Press.
[21]
Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (2010), 75--174.
[22]
Daniel Fried and Stephen G. Kobourov. 2014. Maps of computer science. In Proceedings of the 2014 IEEE Pacific Visualization Symposium (PacificVis’14), Yokohama. 113--120.
[23]
Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov. 2010. GMap: Drawing graphs as maps. In Proceedings of the 17th International Conference on Graph Drawing (GD’09), Chicago. 405--407.
[24]
Emden R. Gansner, Yifan Hu, and Stephen C. North. 2013. Interactive visualization of streaming text data with dynamic maps. Journal of Graph Algorithms and Applications 17, 4 (2013), 515--540.
[25]
Adrien Guille, Hakim Hacid, Cécile Favre, and Djamel A. Zighed. 2013. Information diffusion in online social networks: A survey. SIGMOD Record 42, 2 (2013), 17--28.
[26]
Diansheng Guo, Jin Chen, Alan M. MacEachren, and Ke Liao. 2006. A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics 12, 6 (Nov 2006), 1461--1474.
[27]
Jeffrey Heer and Danah Boyd. 2005. Vizster: Visualizing online social networks. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis’05), Minneapolis, MN. 5.
[28]
Nathalie Henry and Jean-Daniel Fekete. 2007. Matlink: Enhanced matrix visualization for analyzing social networks. In Proceedings of the IFIP Conference on Human-Computer Interaction, Rio de Janeiro. 288--302.
[29]
Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. 2007. NodeTrix: A hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1302--1309.
[30]
Hexagonal maps. {n. d.}. http://cartonerd.blogspot.com/2015/05/helecxagon-mapping.html.
[31]
Mengdie Hu, Shixia Liu, Furu Wei, Yingcai Wu, John Stasko, and Kwan-Liu Ma. 2012. Breaking news on twitter. In CHI Conference on Human Factors in Computing Systems (CHI’12), Austin. 2751--2754.
[32]
Yifan Hu. 2005. Efficient and high quality force-directed graph drawing. The Mathematica Journal 10 (2005), 37--71. http://www.mathematica-journal.com/issue/v10i1/contents/graph_draw/graph_draw.pdf.
[33]
Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. 2007. Why we twitter: Understanding microblogging usage and communities. In Proceedings of the 9th International Workshop on Knowledge Discovery on the Web, Advances in Web Mining and Web Usage Analysis (WebKDD’07), and 1st International Workshop on Social Networks Analysis (SNA-KDD’07), San Jose, CA. 56--65.
[34]
Brian Karrer and M. E. J. Newman. 2010. Stochastic blockmodels and community structure in networks. CoRR abs/1008.3926 (2010). http://arxiv.org/abs/1008.3926
[35]
Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn Kohlhammer, and Guy Melançon. 2008. Information visualization. In Visual Analytics: Definition, Process, and Challenges, Andreas Kerren, John T. Stasko, Jean-Daniel Fekete, and Chris North (Eds.). Springer-Verlag, 154--175.
[36]
Adam Marcus, Michael S. Bernstein, Osama Badar, David R. Karger, Samuel Madden, and Robert C. Miller. 2011. Twitinfo: Aggregating and visualizing microblogs for event exploration. In Proceedings of the International Conference on Human Factors in Computing Systems (CHI’11), Vancouver. 227--236.
[37]
D. Mashima, S. Kobourov, and Y. Hu. 2012. Visualizing dynamic data with maps. IEEE Transactions on Visualization and Computer Graphics 18, 9 (2012), 1424--1437.
[38]
Lev Nachmanson, Roman Prutkin, Bongshin Lee, Nathalie Henry Riche, Alexander E. Holroyd, and Xiaoji Chen. 2015. Graphmaps: Browsing large graphs as interactive maps. CoRR abs/1506.06745 (2015). http://arxiv.org/abs/1506.06745
[39]
Tiago P. Peixoto. 2014. The graph-tool python library. figshare (2014).
[40]
Marco Pennacchiotti and Ana-Maria Popescu. 2011. A machine learning approach to twitter user classification. In Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2886.
[41]
Donghao Ren, Xin Zhang, Zhenhuang Wang, Jing Li, and Xiaoru Yuan. 2014. WeiboEvents: A crowd sourcing weibo visual analytic system. In Pacific Visualization Symposium (PacificVis) Notes, Yokohama. 330--334.
[42]
Dominik Sacha, Andreas Stoffel, Florian Stoffel, Bum Chul Kwon, Geoffrey P. Ellis, and Daniel A. Keim. 2014. Knowledge generation model for visual analytics. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec 2014), 1604--1613.
[43]
Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc.
[44]
Tobias Schreck and Daniel A. Keim. 2013. Visual analysis of social media data. IEEE Computer 46, 5 (2013), 68--75.
[45]
Lei Shi, Hanghang Tong, Jie Tang, and Chuang Lin. 2014. Flow-based influence graph visual summarization. CoRR abs/1408.2401 (2014). http://arxiv.org/abs/1408.2401
[46]
Marc A. Smith, Ben Shneiderman, Natasa Milic-Frayling, Eduarda Mendes Rodrigues, Vladimir Barash, Cody Dunne, Tony Capone, Adam Perer, and Eric Gleave. 2009. Analyzing social media networks with NodeXL. In Proceedings of the Fourth International Conference on Communities and Technologies, C8T, University Park, PA. 255--264.
[47]
Guodao Sun, Yingcai Wu, Shixia Liu, Tai-Quan Peng, J. J. H. Zhu, and Ronghua Liang. 2014. EvoRiver: Visual analysis of topic coopetition on social media. IEEE Transactions on Visualization and Computer Graphics. 20, 12 (Dec 2014), 1753--1762.
[48]
Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis in large-scale networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris. 807--816.
[49]
James J. Thomas and Kristin A. Cook (Eds.). 2005. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society.
[50]
Ramine Tinati, Leslie Carr, Wendy Hall, and Jonny Bentwood. 2012. Identifying communicator roles in Twitter. In Proceedings of the 21st World Wide Web Conference (WWW’12), Lyon. 1161--1168.
[51]
Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579--2605 (2008), 85.
[52]
C. Vehlow, F. Beck, P. Auwärter, and D. Weiskopf. 2015. Visualizing the evolution of communities in dynamic graphs. Computer Graphics Forum 34, 1 (Feb. 2015), 277--288.
[53]
Fernanda Viégas, Martin Wattenberg, Jack Hebert, Geoffrey Borggaard, Alison Cichowlas, Jonathan Feinberg, Jon Orwant, and Christopher Wren. 2013. Google+Ripples: A native visualization of information flow. In Proceedings of the 22nd International World Wide Web Conference (WWW’13), Rio de Janeiro. 1389--1398.
[54]
Xiting Wang, Shixia Liu, Yang Chen, Tai-Quan Peng, Jing Su, Jing Yang, and Baining Guo. 2016. How ideas flow across multiple social groups. In Proceedings of IEEE Visual Analytics Science and Technology (VAST’16), Baltimore, MD. 51--60.
[55]
W. Wu, Y. Zheng, N. Cao, H. Zeng, B. Ni, H. Qu, and L. M. Ni. 2017. MobiSeg: Interactive region segmentation using heterogeneous mobility data. In Proceedings of the 2017 IEEE Pacific Visualization Symposium (PacificVis). 91--100.
[56]
Yingcai Wu, Nan Cao, David Gotz, Yap-Peng Tan, and Daniel A. Keim. 2016. A survey on visual analytics of social media data. IEEE Transactions on Multimedia 18 (2016), 2135--2148.
[57]
Yingcai Wu, Shixia Liu, Kai Yan, Mengchen Liu, and Fangzhao Wu. 2014. OpinionFlow: Visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphics. 20, 12 (2014), 1763--1772.
[58]
Rebecca Xiong and Judith Donath. 1999. PeopleGarden: Creating datnulla portraits for users. In Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology (UIST’99). 37--44.
[59]
Panpan Xu, Yingcai Wu, Enxun Wei, Tai-Quan Peng, Shixia Liu, Jonathan J. H. Zhu, and Huamin Qu. 2013. Visual analysis of topic competition on social media. IEEE Transactions on Visualization and Computer Graphics. 19, 12 (2013), 2012--2021.
[60]
Muye Yang and Robert P. Biuk-Aghai. 2015. Enhanced hexagon-tiling algorithm for map-like information visualisation. In Proceedings of the 8th International Symposium on Visual Information Communication and Interaction (VINCI’15). ACM, 137--142.
[61]
Jian Zhao, Nan Cao, Zhen Wen, Yale Song, Yu-Ru Lin, and Christopher Collins. 2014. FluxFlow: Visual analysis of anomalous information spreading on social media. IEEE Transactions on Visualization and Computer Graphics. 20, 12 (2014), 1773--1782.

Cited By

View all
  • (2023)DiVA: A Scalable, Interactive and Customizable Visual Analytics Platform for Information Diffusion on Large NetworksACM Transactions on Knowledge Discovery from Data10.1145/355877117:4(1-33)Online publication date: 24-Feb-2023
  • (2022)Survey on Visual Analysis of Event Sequence DataIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.310041328:12(5091-5112)Online publication date: 1-Dec-2022
  • (2022)Egocentric visual analysis of dynamic citation networkJournal of Visualization10.1007/s12650-022-00862-725:6(1343-1360)Online publication date: 1-Dec-2022
  • Show More Cited By

Index Terms

  1. D-Map+: Interactive Visual Analysis and Exploration of Ego-centric and Event-centric Information Diffusion Patterns in Social Media

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Intelligent Systems and Technology
    ACM Transactions on Intelligent Systems and Technology  Volume 10, Issue 1
    Special Issue on Visual Analytics
    January 2019
    235 pages
    ISSN:2157-6904
    EISSN:2157-6912
    DOI:10.1145/3295616
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 November 2018
    Accepted: 01 January 2018
    Revised: 01 December 2017
    Received: 01 September 2017
    Published in TIST Volume 10, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Social media
    2. information diffusion
    3. map

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • NSFC
    • German Science Foundation (DFG) in priority research program SPP
    • the National Program on Key Basic Research Project (973 Program)
    • NSFC Key Project
    • the National Key Research and Development Program of China

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)47
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)DiVA: A Scalable, Interactive and Customizable Visual Analytics Platform for Information Diffusion on Large NetworksACM Transactions on Knowledge Discovery from Data10.1145/355877117:4(1-33)Online publication date: 24-Feb-2023
    • (2022)Survey on Visual Analysis of Event Sequence DataIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.310041328:12(5091-5112)Online publication date: 1-Dec-2022
    • (2022)Egocentric visual analysis of dynamic citation networkJournal of Visualization10.1007/s12650-022-00862-725:6(1343-1360)Online publication date: 1-Dec-2022
    • (2021)POI Recommendation Method Using Deep Learning in Location-Based Social NetworksWireless Communications & Mobile Computing10.1155/2021/91208642021Online publication date: 1-Jan-2021
    • (2021)Co-Bridges: Pair-wise Visual Connection and Comparison for Multi-item Data StreamsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303041127:2(1612-1622)Online publication date: Feb-2021
    • (2020)Visualization of Emergency Needs Posted on Social Media by Metaphor MapData and Information Management10.2478/dim-2020-0021Online publication date: 17-Oct-2020
    • (2020)The State of the Art in Map‐Like VisualizationComputer Graphics Forum10.1111/cgf.1403139:3(647-674)Online publication date: 18-Jul-2020
    • (2019)Explainable Visualization of Collaborative Vandal Behaviors in Wikipedia2019 IEEE Symposium on Visualization for Cyber Security (VizSec)10.1109/VizSec48167.2019.9161504(1-5)Online publication date: Oct-2019
    • (2019)Time Varying Predominance Tag Maps2019 IEEE Visualization Conference (VIS)10.1109/VISUAL.2019.8933654(231-235)Online publication date: Oct-2019
    • (2019)R-Map: A Map Metaphor for Visualizing Information Reposting Process in Social MediaIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.2934263(1-1)Online publication date: 2019
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media