Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3216122.3216171acmotherconferencesArticle/Chapter ViewAbstractPublication PagesideasConference Proceedingsconference-collections
research-article

A paradigm for the cooperation of objects belonging to different IoTs

Published: 18 June 2018 Publication History

Abstract

The Internet of Things (IoT) is currently considered the new frontier of the Internet. One of the most effective ways to investigate and implement IoT is based on the use of the social network paradigm. In the last years, social network researchers have introduced new models capable of capturing the growing complexity of this scenario. One of the most known of them is the Social Internetworking System, which models a scenario comprising several related social networks. In this paper, we investigate the possibility of applying the ideas characterizing the Social Internetworking System to IoT and we propose a new paradigm capable of modelling this scenario and of favoring the cooperation of objects belonging to different IoTs. Furthermore, in order to give an idea of both the potentialities and the complexity of this new paradigm, we illustrate in more detail one of the most interesting issues regarding it, namely the redefinition of the betweenness centrality measure.

References

[1]
2017. IPSO Alliance. https://www.ipso-alliance.org/ (2017).
[2]
2017. Thingful: A Search Engine for the Internet of Things. https://thingful.net/ (2017).
[3]
M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. 2014. Named data networking for IoT: An architectural perspective. In Proc. of the European Conference on Networks and Communications (EuCNC'2014). IEEE, Bologna, Italy, 1--5.
[4]
L. Atzori, A. Iera, and G. Morabito. 2010. The Internet of Things: A survey. Computer networks 54, 15 (2010), 2787--2805. Elsevier.
[5]
L. Atzori, A. Iera, and G. Morabito. 2011. SIoT: Giving a social structure to the Internet of Things. IEEE Communications Letters 15, 11 (2011), 1193--1195. IEEE.
[6]
L. Atzori, A. Iera, and G. Morabito. 2014. From "smart objects" to "social objects": The next evolutionary step of the Internet of Things. IEEE Communications Magazine 52, 1 (2014), 97--105. IEEE.
[7]
L. Atzori, A. Iera, and G. Morabito. 2017. Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks 56 (2017), 122--140. Elsevier.
[8]
L. Atzori, A. Iera, G. Morabito, and M. Nitti. 2012. The Social Internet of Things (SIoT)-- when social networks meet the Internet of Things: Concept, architecture and network characterization. Computer networks 56, 16 (2012), 3594--3608. Elsevier.
[9]
D.A. Bader, S. Kintali, K. Madduri, and M. Mihail. 2007. Approximating betweenness centrality. In Proc. of the International Workshop on Algorithms and Models for the Web-Graph (WAW'07), Vol. 4863. San Diego, CA, USA, 124--137. Springer.
[10]
M. Barthelemy. 2004. Betweenness centrality in large complex networks. The European Physical Journal B-Condensed Matter and Complex Systems 38, 2 (2004), 163--168. Springer.
[11]
A. Bavelas. 1948. A Mathematical Model for Small Group Structures. Human Organization 7, 3 (1948), 16--30. SFAA.
[12]
M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi. 2013. Multidimensional networks: foundations of structural analysis. World Wide Web 16, 5-6 (2013), 567--593. Springer.
[13]
S.P. Borgatti. 2005. Centrality and Network flow. Social Networks 27(1) (2005), 55--71. Elsevier B.V.
[14]
S. Borgatti and M. Everett. 2006. A graph-theoretic perspective on centrality. Social networks 28, 4 (2006), 466--484. Elsevier.
[15]
U. Brandes. 2001. A faster algorithm for betweenness centrality. Journal of mathematical sociology 25, 2 (2001), 163--177. Taylor & Francis.
[16]
U. Brandes. 2008. On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30, 2 (2008), 136--145. Elsevier.
[17]
F. Buccafurri, V.D. Foti, G. Lax, A. Nocera, and D. Ursino. 2013. Bridge Analysis in a Social Internetworking Scenario. Information Sciences 224 (2013), 1--18. Elsevier.
[18]
D. Chen, L. Lü, M. Shang, Y. Zhang, and T. Zhou. 2012. Identifying influential nodes in complex networks. Physica a: Statistical mechanics and its applications 391, 4 (2012), 1777--1787. Elsevier.
[19]
P. De Meo, A. Nocera, G. Quattrone, D. Rosaci, and D. Ursino. 2009. Finding reliable users and social networks in a social internetworking system. In Proc. of the International Database Engineering and Applications Symposium (IDEAS 2009). Cetraro, Italy, 173--181. ACM Press.
[20]
S. Distefano, G. Merlino, and A. Puliafito. 2012. Enabling the cloud of things. In Proc. of the International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS'2012). IEEE, Taichung, Taiwan, 858--863.
[21]
M.G. Everett and S.P. Borgatti. 1999. The centrality of groups and classes. The Journal of mathematical sociology 23, 3 (1999), 181--201. Taylor & Francis.
[22]
M.G. Everett and S.P. Borgatti. 2005. Ego network betweenness. Social networks 27, 1 (2005), 31--38. Elsevier.
[23]
I. Farris, R. Girau, L. Militano, M. Nitti, L. Atzori, A. Iera, and G. Morabito. 2015. Social virtual objects in the edge cloud. IEEE Cloud Computing 2, 6 (2015), 20--28. IEEE.
[24]
L.C. Freeman. 1979. Centrality in social networks conceptual clarification. Social Networks 1, 3 (1979), 215--239. Elsevier.
[25]
L. C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (1977), 35--41. JSTOR.
[26]
R. Geisberger, P. Sanders, and D. Schultes. 2008. Better approximation of betweenness centrality. In Proc. of the Workshop on Algorithm Engineering & Expermiments (ALENEX'08). San Francisco, CA, USA, 90--100.
[27]
J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems 29, 7 (2013), 1645--1660. Elsevier.
[28]
D. Guinard, M. Fischer, and V. Trifa. 2010. Sharing using social networks in a composable web of things. In Proc. of the International Conference on Pervasive Computing and Communications (PERCOM 2010). IEEE, Mannheim, Germany, 702--707.
[29]
D. Guinard, V. Trifa, F. Mattern, and E. Wilde. 2011. From the internet of things to the web of things: Resource-oriented architecture and best practices. Architecting the Internet of Things (2011), 97--129. Springer.
[30]
D. Guinard, V. Trifa, and E. Wilde. 2010. Architecting a mashable open world wide web of things. Technical Report of the Institute for Pervasive Computing, ETH Zürich, Zürich, Switzerland 663 (2010).
[31]
L. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H. Gellersen. 2001. Smart-its friends: A technique for users to easily establish connections between smart artefacts. In Proc. of the International Conference on Ubiquitous Computing (Ubicomp'2001). Springer, Atlanta, GA, USA, 116--122.
[32]
I. Ishaq, D. Carels, G. Teklemariam, J. Hoebeke, F. Abeele, E. Poorter, I. Moerman, and P. Demeester. 2013. IETF standardization in the field of the Internet of Things (IoT): a survey. Journal of Sensor and Actuator Networks 2, 2 (2013), 235--287. Multidisciplinary Digital Publishing Institute.
[33]
F. Jamour, S. Skiadopoulos, and P. Kalnis. 2017. Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs. IEEE Transactions on Parallel and Distributed Systems (2017). IEEE.
[34]
S. Karnouskos. 2013. Smart houses in the smart grid and the search for value-added services in the cloud of things era. In Proc. of the International Conference on Industrial Technology (ICIT'2013). IEEE, Cape Town, Western Cape, South Africa, 2016--2021.
[35]
A. Kowshalya and M. Valarmathi. 2017. Trust Management in the Social Internet of Things. Wireless Personal Communications (2017), 1--11. Springer.
[36]
M. Kranz, L. Roalter, and F. Michahelles. 2010. Things that Twitter: social networks and the Internet of Things. In Proc. of the International Workshop on Pervasive Computing (Pervasive 2010). Helsinki, Finland, 1--10.
[37]
M. Lee, J. Lee, J.Y. Park, R.H. Choi, and C. Chung. 2012. Qube: a quick algorithm for updating betweenness centrality. In Proc. of the International Conference on World Wide Web (WWW'12). Lyon, France, 351--360. ACM.
[38]
P. Lo Giudice, P. Russo, and D. Ursino. 2017. A Social Network Analysis based approach to deriving knowledge about research scenarios in a set of countries. In Atti del Venticinquesimo Convegno Nazionale su Sistemi Evoluti per Basi di Dati (SEBD'17). Squillace (CZ), Italy, 25--32.
[39]
L. Militano, M. Nitti, L. Atzori, and A. Iera. 2016. Enhancing the navigability in a social network of smart objects: A Shapley-value based approach. Computer Networks 103 (2016), 1--14. Elsevier.
[40]
D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. 2012. Internet of things: Vision, applications and research challenges. Ad Hoc Networks 10, 7 (2012), 1497--1516. Elsevier.
[41]
M.E.J. Newman. 2005. A measure of betweenness centrality based on random walks. Social Networks 27, 1 (2005), 39--54. Elsevier.
[42]
H. Ning and Z. Wang. 2011. Future internet of things architecture: like mankind neural system or social organization framework? IEEE Communications Letters 15, 4 (2011), 461--463. IEEE.
[43]
M. Nitti, L. Atzori, and I.P. Cvijikj. 2014. Network navigability in the social internet of things. In Proc. of the International Conference on Internet of Things (WF-IoT'14). Seoul, South Korea, 405--410. IEEE.
[44]
M. Nitti, R. Girau, L. Atzori, A. Iera, and G. Morabito. 2012. A subjective model for trustworthiness evaluation in the social internet of things. In Proc. of the International Conference on Personal Indoor and Mobile Radio Communications (PIMRC'12). Sydney, Australia, 18--23. IEEE.
[45]
A. Nocera and D. Ursino. 2012. PHIS: a system for scouting potential hubs and for favoring their "growth" in a Social Internetworking Scenario. Knowledge-Based Systems 36 (2012), 288--299. Elsevier.
[46]
T. Opsahl, F. Agneessens, and J. Skvoretz. 2010. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 32, 3 (2010), 245--251. Elsevier.
[47]
C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. 2014. Context aware computing for the Internet of Things: A survey. IEEE Communications Surveys & Tutorials 16, 1 (2014), 414--454. IEEE.
[48]
R. Puzis, Y. Elovici, and S. Dolev. 2007. Fast algorithm for successive computation of group betweenness centrality. Physical Review E 76, 5 (2007), 056709. APS.
[49]
M. Riondato and E. Kornaropoulos. 2016. Fast approximation of betweenness centrality through sampling. Data Mining and Knowledge Discovery 30, 2 (2016), 438--475. Springer.
[50]
I. Stojmenovic and S. Olariu. 2005. Data-centric protocols for wireless sensor networks. Handbook of sensor networks: algorithms and architectures (2005), 417--456. Wiley.
[51]
K. Tei and L. Gurgen. 2014. ClouT: Cloud of things for empowering the citizen clout in smart cities. In Proc. of the World Forum on Internet of Things (WF-IoT'2014). IEEE, Seoul, South Korea, 369--370.
[52]
D.R. White and S.P. Borgatti. 1994. Betweenness centrality measures for directed graphs. Social Networks 16, 4 (1994), 335--346. Elsevier.
[53]
K. Xu, Y. Qu, and K. Yang. 2016. A tutorial on the internet of things: From a heterogeneous network integration perspective. IEEE Network 30, 2 (2016), 102--108. IEEE.
[54]
Y. Zhang, D. Raychadhuri, L. Grieco, E. Baccelli, J. Burke, R. Ravindran, G. Wang, A. Lindgren, B. Ahlgren, and O. Schelen. 2015. Requirements and Challenges for IoT over ICN. https://tools.ietf.org/html/draft-zhang-icnrg-icniot-requirements-00 (2015). IETF Internet-Draft.
[55]
Y. Zhang, D. Raychadhuri, R. Ravindran, and G. Wang. 2013. ICN based Architecture for IoT. https://tools.ietf.org/html/draft-zhang-iot-icn-challenges-02 (2013). IRTF contribution.

Cited By

View all
  • (2023)Securing Critical User Information over the Internet of Medical Things Platforms Using a Hybrid Cryptography SchemeFuture Internet10.3390/fi1503009915:3(99)Online publication date: 28-Feb-2023
  • (2023)Applying IoT Sensors and Big Data to Improve Precision Crop Production: A ReviewAgronomy10.3390/agronomy1310260313:10(2603)Online publication date: 12-Oct-2023
  • (2021)An Attribute-Based Access Control for IoT Using Blockchain and Smart ContractsSustainability10.3390/su13191055613:19(10556)Online publication date: 23-Sep-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
IDEAS '18: Proceedings of the 22nd International Database Engineering & Applications Symposium
June 2018
328 pages
ISBN:9781450365277
DOI:10.1145/3216122
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • Concordia University: Concordia University

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 June 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Cross Betweenness Centrality
  2. Cross Edges
  3. Cross Nodes
  4. Inner Betweenness Centrality
  5. Internet of Things
  6. Social Internetworking System

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

IDEAS 2018

Acceptance Rates

Overall Acceptance Rate 74 of 210 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Securing Critical User Information over the Internet of Medical Things Platforms Using a Hybrid Cryptography SchemeFuture Internet10.3390/fi1503009915:3(99)Online publication date: 28-Feb-2023
  • (2023)Applying IoT Sensors and Big Data to Improve Precision Crop Production: A ReviewAgronomy10.3390/agronomy1310260313:10(2603)Online publication date: 12-Oct-2023
  • (2021)An Attribute-Based Access Control for IoT Using Blockchain and Smart ContractsSustainability10.3390/su13191055613:19(10556)Online publication date: 23-Sep-2021
  • (2021)A Survey on Big IoT Data Indexing: Potential Solutions, Recent Advancements, and Open IssuesFuture Internet10.3390/fi1401001914:1(19)Online publication date: 31-Dec-2021
  • (2020)A study On : Confidentiality Approach to Prevent Features Disclosure in IoT SituationsInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology10.32628/CSEIT2063146(616-632)Online publication date: 1-Jun-2020
  • (2020)An approach to evaluate trust and reputation of things in a Multi-IoTs scenarioComputing10.1007/s00607-020-00818-5102:10(2257-2298)Online publication date: 5-May-2020
  • (2019)Building Topic-Driven Virtual IoTs in a Multiple IoTs ScenarioSensors10.3390/s1913295619:13(2956)Online publication date: 4-Jul-2019

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media