Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3230543.3230567acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

PLoRa: a passive long-range data network from ambient LoRa transmissions

Published: 07 August 2018 Publication History

Abstract

This paper presents PLoRa, an ambient backscatter design that enables long-range wireless connectivity for batteryless IoT devices. PLoRa takes ambient LoRa transmissions as the excitation signals, conveys data by modulating an excitation signal into a new standard LoRa "chirp" signal, and shifts this new signal to a different LoRa channel to be received at a gateway faraway. PLoRa achieves this by a holistic RF front-end hardware and software design, including a low-power packet detection circuit, a blind chirp modulation algorithm and a low-power energy management circuit. To form a complete ambient LoRa backscatter network, we integrate a light-weight backscatter signal decoding algorithm with a MAC-layer protocol that work together to make coexistence of PLoRa tags and active LoRa nodes possible in the network. We prototype PLoRa on a four-layer printed circuit board, and test it in various outdoor and indoor environments. Our experimental results demonstrate that our prototype PCB PLoRa tag can backscatter an ambient LoRa transmission sent from a nearby LoRa node (20 cm away) to a gateway up to 1.1 km away, and deliver 284 bytes data every 24 minutes indoors, or every 17 minutes outdoors. We also simulate a 28-nm low-power FPGA based prototype whose digital baseband processor achieves 220 μW power consumption.

References

[1]
2N7000 MOSFET. Website.
[2]
ADG902 RF switch. Website.
[3]
Arduino uno rev3. Website.
[4]
D. Bharadia, K. R. Joshi, M. Kotaru, S. Katti. BackFi: High throughput Wi-Fi backscatter. SIGCOMM Comput. Commun. Rev., 45(4), 283--296, 2015.
[5]
Bluetooth low energy. Website.
[6]
NCS2200 Series, NCS2200A Low Voltage Comparators. Website.
[7]
D. M. Dobkin. The RF in RFID: UHF RFID in practice. Newnes, 2012.
[8]
A. Dongare, R. Narayanan, A. Gadre, A. Luong, A. Balanuta, S. Kumar, B. Iannucci, A. Rowe. Charm: Exploiting geographical diversity through coherent combining in low-power wide-area networks. IPSN, 2018.
[9]
Surface Mount Microwave Schottky Detector Diodes. Website.
[10]
IGLOO nano FPGAs. Website.
[11]
Microsemi Corporation AGLN250V2-VQ100 FPGA. .
[12]
gr-lora decoder. Website.
[13]
C. Hambeck, S. Mahlknecht, T. Herndl. A 2.4 μw wake-up receiver for wireless sensor nodes with- 71dbm sensitivity. Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011.
[14]
P. Hu, P. Zhang, D. Ganesan. Laissez-faire: Fully asymmetric backscatter communication. SIGCOMM, 2015.
[15]
IR510A MOSFET. Website.
[16]
V. Iyer, V. Talla, B. Kellogg, S. Gollakota, J. Smith. Inter-technology backscatter: Towards internet connectivity for implanted devices. SIGCOMM, 2016.
[17]
B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, D. Wetherall. Wi-Fi backscatter: Internet connectivity for RF-powered devices. SIGCOMM, 2014.
[18]
B. Kellogg, V. Talla, S. Gollakota, J. R. Smith. Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. NSDI, 2016.
[19]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J. R. Smith. Ambient backscatter: wireless communication out of thin air. SIGCOMM, 2013.
[20]
Mini-circuit ZRL-1150LN+ low noise amplifier. .
[21]
LoRa. Website.
[22]
Four-faith LoRa application. Website.
[23]
C. Lu, V. Raghunathan, K. Roy. Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2011.
[24]
S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, J. R. Smith. Wispcam: A battery-free rfid camera. RFID, 2015.
[25]
Narrow-band IoT. Website.
[26]
P. Nintanavongsa, U. Muncuk, D. R. Lewis, K. R. Chowdhury. Design optimization and implementation for RF energy harvesting circuits. IEEE Journal on emerging and selected topics in circuits and systems, 2012.
[27]
S. Oh, N. E. Roberts, D. D. Wentzloff. A 116nw multi-band wake-up receiver with 31-bit correlator and interference rejection. CICC, 2013 IEEE, 2013.
[28]
A. N. Parks, A. Liu, S. Gollakota, J. R. Smith. Turbocharging ambient backscatter communication. SIGCOMM, 2015.
[29]
C. Pérez-Penichet, F. Hermans, A. Varshney, T. Voight. Augmenting IoT networks with backscatter-enabled passive sensor tags. HotWireless, 2016.
[30]
J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, S. Roundy. Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42--48, 2000.
[31]
B. Ransford, J. Sorber, K. Fu. Mementos: System support for long-running computation on RFID-scale devices. ACM SIGPLAN Notices, 2012.
[32]
N. E. Roberts, D. D. Wentzloff. Ultra-low power wake-up radios. Ultra-Low-Power Short-Range Radios, 137--162, 2015.
[33]
Samwha Tech Corp. SCDM3R3224 super capacitor. Website.
[34]
Sigfox. Website.
[35]
LoRa Technology Is Connecting Our Smart Planet. Website.
[36]
Semtech SX1257. Website.
[37]
Semtech SX1276 Transceiver. Website.
[38]
V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, S. Gollakota. LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity. IMWUT, 2017.
[39]
U8485A DC/10 MHz-33 GHz USB Thermocouple Power Sensor. Website.
[40]
A. Varshney, O. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans, T. Voigt. Lorea: A backsca er architecture that achieves a long communication range. SenSys, 2017.
[41]
A. Wang, V. Iyer, V. Talla, J. R. Smith, S. Gollakota. FM Backscatter: Enabling Connected Cities and Smart Fabrics. NSDI, 2017.
[42]
J. Wang, H. Hassanieh, D. Katabi, P. Indyk. Efficient and reliable low-power backscatter networks. SIGCOMM, 2012.
[43]
Intel WISP 4.0. Website.
[44]
Xilinx kintex 7 datasheet. Website.
[45]
Photovoltaic Charger XRYG-905. Website.
[46]
P. Zhang, D. Bharadia, K. R. Joshi, S. Katti. HitchHike: Practical Backscatter Using Commodity WiFi. SenSys, 2016.
[47]
P. Zhang, D. Ganesan. Enabling bit-by-bit backscatter communication in severe energy harvesting environments. NSDI, 2014.
[48]
P. Zhang, C. Josephson, D. Bharadia, S. Katti. Freerider: Backscatter communication using commodity radios. CoNEXT, 2017.
[49]
P. Zhang, M. Rostami, P. Hu, D. Ganesan. Enabling practical backscatter communication for on-body sensors. SIGCOMM, 2016.
[50]
X. Zhang, K. G. Shin. E-mili: Energy-minimizing idle listening in wireless networks. IEEE Transactions on Mobile Computing, 2012.
[51]
Zigbee. Website.

Cited By

View all
  • (2024)FLoRa+: Energy-efficient, Reliable, Beamforming-assisted, and Secure Over-the-air Firmware Update in LoRa NetworksACM Transactions on Sensor Networks10.1145/364154820:3(1-28)Online publication date: 22-Jan-2024
  • (2024)Revolutionizing LoRa Gateway with XGate: Scalable Concurrent Transmission across Massive Logical ChannelsProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649375(482-496)Online publication date: 29-May-2024
  • (2024)Load Modulation for Backscatter Communication: Channel Capacity and Near-Capacity SchemesIEEE Transactions on Wireless Communications10.1109/TWC.2023.331311023:5(3946-3958)Online publication date: May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGCOMM '18: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication
August 2018
604 pages
ISBN:9781450355674
DOI:10.1145/3230543
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 August 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. LoRa
  2. backscatter
  3. long-range
  4. wireless networks

Qualifiers

  • Research-article

Funding Sources

Conference

SIGCOMM '18
Sponsor:
SIGCOMM '18: ACM SIGCOMM 2018 Conference
August 20 - 25, 2018
Budapest, Hungary

Acceptance Rates

Overall Acceptance Rate 462 of 3,389 submissions, 14%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)733
  • Downloads (Last 6 weeks)90
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2024)FLoRa+: Energy-efficient, Reliable, Beamforming-assisted, and Secure Over-the-air Firmware Update in LoRa NetworksACM Transactions on Sensor Networks10.1145/364154820:3(1-28)Online publication date: 22-Jan-2024
  • (2024)Revolutionizing LoRa Gateway with XGate: Scalable Concurrent Transmission across Massive Logical ChannelsProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649375(482-496)Online publication date: 29-May-2024
  • (2024)Load Modulation for Backscatter Communication: Channel Capacity and Near-Capacity SchemesIEEE Transactions on Wireless Communications10.1109/TWC.2023.331311023:5(3946-3958)Online publication date: May-2024
  • (2024)A Low-Power Demodulator for LoRa Backscatter Systems With Frequency-Amplitude TransformationIEEE/ACM Transactions on Networking10.1109/TNET.2024.339650932:4(3515-3527)Online publication date: Aug-2024
  • (2024)One Shot for All: Quick and Accurate Data Aggregation for LPWANsIEEE/ACM Transactions on Networking10.1109/TNET.2024.335379232:3(2285-2298)Online publication date: Jun-2024
  • (2024)Universal WiFi Backscatter With Ambient Space-Time StreamsIEEE/ACM Transactions on Networking10.1109/TNET.2023.333692232:3(2042-2052)Online publication date: Jun-2024
  • (2024)Eliminating Design Effort: A Reconfigurable Sensing Framework for Chipless, Backscatter TagsIEEE/ACM Transactions on Networking10.1109/TNET.2023.332026332:2(1155-1170)Online publication date: Apr-2024
  • (2024)MobiScatter: Enhancing Capacity in Drone-Assisted High-Concurrency Backscatter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2023.329016832:1(535-549)Online publication date: Feb-2024
  • (2024)Heartbeating with LTE Networks for Ambient BackscatterIEEE Transactions on Mobile Computing10.1109/TMC.2023.3290298(1-12)Online publication date: 2024
  • (2024)Noncoherent Frequency-Shift Keying for Ambient Backscatter Over OFDM SignalsIEEE Open Journal of the Communications Society10.1109/OJCOMS.2024.34447195(5219-5231)Online publication date: 2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media