Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

A Network-Based Virtual Reality Simulation Training Approach for Orthopedic Surgery

Published: 22 August 2018 Publication History

Abstract

The focus of this article is on the adoption of immersive and haptic simulators for training of medical residents in a surgical process called Less Invasive Stabilization System (LISS) plating surgery. LISS surgery is an orthopedic surgical procedure to treat fractures of the femur bone. Development of such simulators is a complex task which involves multiple systems, technologies, and human experts. Emerging Next Generation Internet technologies were used to develop the standalone on-line haptic-based simulator accessible to the students 24/7. A standalone immersive surgical simulator was also developed using HTC Vive. Expert surgeons played an important role in developing the simulator system; use cases of the target surgical processes were built using a modeling language called the engineering Enterprise Modeling Language (eEML). A detailed study presenting the comparison between the haptic-based simulator and the immersive simulator has been also presented. The outcomes of this study underscore the potential of using such simulators in surgical training.

References

[1]
B. Tolsdorff, A. Pommert, K. H. Höhne, A. Petersik, B. Pflesser, U. Tiede, and R. Leuwer. 2010. Virtual reality: A new paranasal sinus surgery simulator. The Laryngoscope, 120, 2, 420--426.
[2]
K. S. Choi, S. Soo, and F. L. Chung. 2009. A virtual training simulator for learning cataract surgery with phacoemulsification. Computers in Biology and Medicine, 39, 11, 1020--1031.
[3]
G. Echegaray, I. Herrera, I. Aguinaga, C. Buchart, and D. Borro. 2014. A brain surgery simulator. IEEE Computer Graphics and Applications, 34, 3, 12--18.
[4]
C. Luciano, P. Banerjee, and T. DeFanti. 2009. Haptics-based virtual reality periodontal training simulator. Virtual Reality, 13, 2, 69--85.
[5]
Y. Shi, Y. Xiong, X. Hua, K. Tan, and X. Pan. 2015. Key techniques of haptic related computation in virtual liver surgery. In 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 355--359.
[6]
L. Yu, T. Wang, W. Wang, Z. Wang, and B. Zhang. 2013. A geometric modeling method based on OpenGL in virtual gallbladder surgery. In 2nd International Conference on Computer Science and Electronics Engineering. Atlantis Press.
[7]
T. M. Peters, C. A. Linte, J. Moore, D. Bainbridge, D. L. Jones, and G. M. Guiraudon. 2008. Towards a medical virtual reality environment for minimally invasive cardiac surgery. In International Workshop on Medical Imaging and Virtual Reality. Springer, Berlin, 1--11.
[8]
T. S. Sørensen, S. V. Therkildsen, P. Makowski, J. L. Knudsen, and E. M. Pedersen. 2001. A new virtual reality approach for planning of cardiac interventions. Artificial Intelligence in Medicine, 22, 3, 193--214.
[9]
T. Berlage, A. Schmitgen, C. Schmitz, and A. Welz. 2001. Simulation and planning of minimally invasive coronary artery bypass surgery. In International Congress Series. Elsevier, 68--72.
[10]
V. T. Le and S. Nahavandi. 2010. A haptic training environment for the heart myoblast cell injection procedure. In 11th International Conference on Control Automation Robotics 8 Vision (ICARCV). IEEE, 448--452.
[11]
J. Ren, R. V. Patel, K. A. McIsaac, G. Guiraudon, and T. M. Peters. 2008. Dynamic 3-D virtual fixtures for minimally invasive beating heart procedures. IEEE Transactions on Medical Imaging, 27, 8, 1061--1070.
[12]
R. Yu, S. Zhang, P. Chiang, Y. Cai, and J. Zheng. 2010. Real-time and realistic simulation for cardiac intervention with GPU. In 2nd International Conference on Computer Modeling and Simulation (ICCMS’10). IEEE, 68--72.
[13]
G. Azzie, J. T. Gerstle, A. Nasr, D. Lasko, J. Green, O. Henao, and A. Okrainec. 2011. Development and validation of a pediatric laparoscopic surgery simulator. Journal of Pediatric Surgery, 46, 5, 897--903.
[14]
S. A. Seixas-Mikelus, T. Kesavadas, G. Srimathveeravalli, R. Chandrasekhar, G. E. Wilding, and K. A. Guru. 2010. Face validation of a novel robotic surgical simulator. Urology, 76, 2, 357--360.
[15]
K. Makiyama, M. Nagasaka, T. Inuiya, K. Takanami, M. Ogata, and Y. Kubota. 2012. Development of a patient specific simulator for laparoscopic renal surgery. International Journal of Urology, 19, 9, 829--835.
[16]
T. P. Grantcharov, V. B. Kristiansen, J. Bendix, L. Bardram, J. Rosenberg, and P. Funch‐Jensen. 2004. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. British Journal of Surgery, 91, 2, 146--150.
[17]
R. Aggarwal, I. Balasundaram, and A. Darzi. 2008. Training opportunities and the role of virtual reality simulation in acquisition of basic laparoscopic skills. Journal of Surgical Research, 145, 1, 80--86.
[18]
J. Torkington, S. G. Smith, B. I. Rees, and A. Darzi. 2000. The role of simulation in surgical training. Annals of the Royal College of Surgeons of England, 82, 2, 88.
[19]
A. Sourin, O. Sourina, and H. T. Sen. 2000. Virtual orthopedic surgery training. IEEE Computer Graphics and Applications, 20, 3, 6--9.
[20]
J. Qin, W. M. Pang, Y. P. Chui, T. T. Wong, and P. A. Heng. 2010. A novel modeling framework for multilayered soft tissue deformation in virtual orthopedic surgery. Journal of Medical Systems, 34, 3, 261--271.
[21]
S. L. Delp and J. P. Loan. 1995. A graphics-based software system to develop and analyze models of musculoskeletal structures. Computers in Biology and Medicine, 25, 1, 21--34.
[22]
M. D. Tsai, M. S. Hsieh, and S. B. Jou. 2001. Virtual reality orthopedic surgery simulator. Computers in Biology and Medicine, 31, 5, 333--351.
[23]
J. W. Park, J. Choi, Y. Park, and K. Sun. 2011. Haptic virtual fixture for robotic cardiac catheter navigation. Artificial Organs, 35, 11, 1127--1131.
[24]
The American Board of Orthopedic Surgery. Retrieved from https://www.abos.org/abos-surgical-skills-modules-for-pgy-1-residents.aspx.
[25]
M. D. Tsai, C. S. Liu, H. Y. Liu, M. S. Hsieh, and F. C. Tsai. 2011. Virtual reality facial contouring surgery simulator based on CT transversal slices. In 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 1--4.
[26]
M. Vankipuram, K. Kahol, A. McLaren, and S. Panchanathan. 2010. A virtual reality simulator for orthopedic basic skills: A design and validation study. Journal of Biomedical Informatics, 43, 5, 661--668.
[27]
P. Blyth, N. S. Stott, and I. A. Anderson. 2007. A simulation-based training system for hip fracture fixation for use within the hospital environment. Injury, 38, 10, 1197--1203.
[28]
S. Bayonat, M. García, C. Mendoza, and J. M. Fernandez. 2006. Shoulder arthroscopy training system with force feedback. In International Conference on Medical Information Visualisation-BioMedical Visualisation (MedVis'06).IEEE, 71--76.
[29]
J. Petersson, K. L. Palmerius, H. Knutsson, O. Wahlstrom, B. Tillander, and M. Borga. 2008. Simulation of patient specific cervical hip fracture surgery with a volume haptic interface. IEEE Transactions on Biomedical Engineering, 55, 4, 1255--1265.
[30]
H. Sabri, B. Cowan, B. Kapralos, M. Porte, D. Backstein, and A. Dubrowskie. 2010. Serious games for knee replacement surgery procedure education and training. Procedia-Social and Behavioral Sciences, 2, 2, 3483--3488.
[31]
I. Kovler, L. Joskowicz, Y. A. Weil, A. Khoury, A. Kronman, R. Mosheiff, and J. Salavarrieta. 2015. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery. International Journal of Computer Assisted Radiology and Surgery, 10, 10, 1535--1546.
[32]
M. D. Tsai, M. S. Hsieh, and C. H. Tsai. (2007). Bone drilling haptic interaction for orthopedic surgical simulator. Computers in Biology and Medicine, 37, 12, 1709--1718.
[33]
O. Sourina, A. Sourin, and H. T. Sen. 2000. Virtual orthopedic surgery training on personal computer. International Journal of Information Technology, 6, 1, 16--29.
[34]
M. X. Kong, Z. J. Du, L. N. Sun, L. X. Fu, Z. H. Jia, and D. M. Wu. 2006. A robot-assisted orthopedic telesurgery system. In 2005 27th Annual IEEE Conference Engineering in Medicine and Biology. IEEE, 97--101.
[35]
L. Rosenblum M. Macedonia. 2000. Virtual orthopedic surgery training. IEEE Computer Graphics and Applications, 20, 3, 6--9.
[36]
G. Burdea, V. Popescu, V. Hentz, and K. Colbert. 2000. Virtual reality-based orthopedic telerehabilitation. IEEE Transactions on Rehabilitation Engineering, 8, 3, 430--432.
[37]
M. A. Padilla-Castaneda, E. Sotgiu, A. Frisoli, M. Bergamasco, P. Orsini, A. Martiradonna, and C. Laddaga. 2013. A virtual reality system for robotic-assisted orthopedic rehabilitation of forearm and elbow fractures. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1506--1511.
[38]
M. Eriksson, H. Flemmer, and J. Wikander. 2005. Haptic simulation of the milling process in temporal bone operations. Studies in Health Technology and Informatics 111 (2005), 133--136.
[39]
D. d'Aulignac, M. C. Cavusoglu, and C. Laugier. 1999. Modeling the dynamics of the human thigh for a realistic echographic simulator with force feedback. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, 1191--1198.
[40]
T. Seth, V. Chaudhary, C. Buyea, and L. Bone. 2011. A virtual interactive navigation system for orthopedic surgical interventions. In 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, ACM, 71.
[41]
W. I. Willaert, R. Aggarwal, I. Van Herzeele, N. J. Cheshire, and F. E. Vermassen. 2012. Recent advancements in medical simulation: patient-specific virtual reality simulation. World Journal of Surgery, 36, 7, 1703--1712.
[42]
C. Karaliotas. 2011. When simulation in surgical training meets virtual reality. Hellenic Journal of Surgery, 83, 6, 303--316.
[43]
J. P. Braman, R. M. Sweet, D. M. Hananel, P. M. Ludewig, and A. E. Van Heest. 2015. Development and validation of a basic arthroscopy skills simulator. Arthroscopy: The Journal of Arthroscopic 8 Related Surgery, 31, 1, 104--112.
[44]
C. Andersen, T. N. Winding, and M. S. Vesterby. 2011. Development of simulated arthroscopic skills: A randomized trial of virtual-reality training of 21 orthopedic surgeons. Acta orthopedica, 82, 1, 90--95.
[45]
K. Rose and R. Pedowitz. 2015. Fundamental arthroscopic skill differentiation with virtual reality simulation. Arthroscopy: The Journal of Arthroscopic 8 Related Surgery, 31, 2, 299--305.
[46]
J. J. Stunt, G. M. M. J. Kerkhoffs, C. N. van Dijk, and G. J. M. Tuijthof. 2015. Validation of the arthros virtual reality simulator for arthroscopic skills. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 11, 3436--3442.
[47]
J. Qin, W. M. Pang, Y. P. Chui, T. T. Wong, and P. A. Heng. 2010. A novel modeling framework for multilayered soft tissue deformation in virtual orthopedic surgery. Journal of Medical Systems, 34, 3, 261--271.
[48]
Y. Lin, X. Wang, F. Wu, X. Chen, C. Wang, and G. Shen. 2014. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. Journal of Biomedical Informatics, 48, 122--129.
[49]
NASA TLX Test. Retrieved from https://humansystems.arc.nasa.gov/groups/TLX/downloads/TLX.pdf.
[50]
A. Nahvi, M. Moghaddam, M. Arbabtafti, M. Mahvash, and B. Richardson. 2016. Virtual bone surgery using a haptic robot. International Journal of Robotics, Theory and Applications, 1, 1, 1--12.
[51]
M. Citak, M. J. Gardner, D. Kendoff, S. Tarte, C. Krettek, L. P. Nolte, and T. Hüfner. 2008. Virtual 3D planning of acetabular fracture reduction. Journal of Orthopedic Research, 26, 4, 547--552.
[52]
L. Assassi, C. Charbonnier, J. Schmid, P. Volino, and N. Magnenat‐Thalmann. 2009. From MRI to anatomical simulation of the hip joint. Computer Animation and Virtual Worlds, 20, 1, 53--66.
[53]
Y. Jun and S. Park. 2011. Polygon-based 3D surgical planning system for hip operation. International Journal of Precision Engineering and Manufacturing, 12, 1, 157--160.
[54]
D. Morris, C. Sewell, N. Blevins, F. Barbagli, and K. Salisbury. 2004. A collaborative virtual environment for the simulation of temporal bone surgery. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin Heidelberg, 319--327.
[55]
B. Chebbi, D. Lazaroff, F. Bogsany, P. X. Liu, L. Ni, and M. Rossi. 2005. Design and implementation of a collaborative virtual haptic surgical training system. In IEEE International Conference Mechatronics and Automation. IEEE, 315--320.
[56]
P. V. Paiva, L. D. S. Machado, A. M. G. Valença, R. M. De Moraes, and T. V. Batista. 2016. Enhancing collaboration on a cloud-based CVE for supporting surgical education. In 2016 XVIII Symposium on Virtual and Augmented Reality (SVR). IEEE, 29--36.
[57]
S. W. Tang, K. L. Chong, J. Qin, Y. P. Chui, S. S. M. Ho, and P. A. Heng. 2007. ECiSS: A middleware based development framework for enhancing collaboration in surgical simulation. In IEEE International Conference on Integration Technology (ICIT'07). IEEE, 15--20.
[58]
C. Jay, M. Glencross, and R. Hubbold. 2007. Modeling the effects of delayed haptic and visual feedback in a collaborative virtual environment. ACM Transactions on Computer-Human Interaction (TOCHI), 14, 2, 8.
[59]
E. Acosta and A. Liu. 2007. Real-time interactions and synchronization of voxel-based collaborative virtual environments. In 2007 IEEE Symposium on 3D User Interfaces. IEEE.
[60]
P. Youngblood, P. M. Harter, S. Srivastava, S. Moffett, W. L. Heinrichs, and P. Dev. 2008. Design, development, and evaluation of an online virtual emergency department for training trauma teams. Simulation in Healthcare, 3, 3, 146--153.
[61]
B. R. A. Sales, L. S. Machado, and R. M. Moraes. 2011. Interactive collaboration for virtual reality systems related to medical education and training. Technology and Medical Sciences, 157--162.
[62]
J. C. De Oliveira and N. D. Georganas. 2003. VELVET: An adaptive hybrid architecture for very large virtual environments. Presence: Teleoperators and Virtual Environments, 12, 6, 555--580.
[63]
J. Qin, K. S. Choi, W. S. Poon, and P. A. Heng. 2009. A framework using cluster-based hybrid network architecture for collaborative virtual surgery. Computer Methods and Programs in Biomedicine, 96, 3, 205--216.
[64]
R. Caceres and A. Friday. 2012. Ubicomp systems at 20: Progress, opportunities, and challenges. IEEE Pervasive Computing, 11, 1, 14--21.
[65]
C. Mégard, F. Gosselin, S. Bouchigny, F. Ferlay, and F. Taha. 2009. User-centered design of a maxillo-facial surgery training platform. In 16th ACM Symposium on Virtual Reality Software and Technology. ACM, 265--266.
[66]
G. Brandt, A. Zimolong, L. Carrat, P. Merloz, H. W. Staudte, S. Lavallee, and G. Rau. 1999. CRIGOS: A compact robot for image-guided orthopedic surgery. IEEE Transactions on Information Technology in Biomedicine, 3, 4, 252--260.
[67]
J. Forsslund, E. L. Sallnas, and K. J. Palmerius. 2009. A user-centered designed FOSS implementation of bone surgery simulations. In EuroHaptics Conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. IEEE, 391--392.
[68]
A. Jalote-Parmar and P. Badke-Schaub. 2008. Workflow integration matrix: A framework to support the development of surgical information systems. Design Studies, 29, 4, 338--368.
[69]
P. Jannin. 2013. Surgical process modeling: Methods and applications. In Presentation at the 2013 Medicine Meets Virtual Reality Conference (NEXTMED/MMVR20).
[70]
A. Nemani, G. Sankaranarayanan, K. Roberts, L. Panait, C. Cao, and S. De. 2013. Hierarchical task analysis of hybrid rigid scope natural orifice translumenal endoscopic surgery (NOTES) cholecystectomy procedures. Studies in Health Technology and Informatics, 184, 293--297.
[71]
J. Cecil, M. B. R. Kumar, A. Gupta, M. Pirela-Cruz, E. Chan-Tin, and J. Yu. 2016. Development of a virtual reality based simulation environment for orthopedic surgical training. In OTM Confederated International Conferences On the Move to Meaningful Internet Systems. Springer, 206--214.
[72]
J. Cecil, A. Gupta, and M. Pirela-Cruz. 2018. An advanced simulator for orthopedic surgical training. International Journal of Computer Assisted Radiology and Surgery, 13, 2, 305--319.
[73]
Communication diagrams. Retrieved from http://agilemodeling.com/style/collaborationDiagram.htm.
[74]
J. Cecil, A. Gupta, M. Pirela-Cruz, and P. Ramanathan. 2017. A cyber training framework for orthopedic surgery. Cogent Medicine, 4, 1, 1419792.
[75]
GENI. Retrieved from www.geni.net.
[76]
FIRE. Retrieved from https://www.ict-fire.eu/.
[77]
M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, and I. Seskar. 2014. GENI: A federated testbed for innovative network experiments. Computer Networks, 61, 5--23.
[78]
Software Defined Networking. Retrieved from https://www.opennetworking.org/sdn-resources/sdn-definition.
[79]
S. Wijewickrema, B. Copson, Y. Zhou, X. Ma, R. Briggs, J. Bailey, G. Kennedy, and S. O'Leary. 2017. Design and evaluation of a virtual reality simulation module for training advanced temporal bone surgery. In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 7--12.
[80]
James D. Watterson, Darren T. Beiko, James K. Kuan, and John D. Denstedt. 2002. A randomized prospective blinded study validating acquisition of ureteroscopy skills using a computer based virtual reality endourological simulator. The Journal of Urology, 168, 5, 1928--1932.
[81]
Schlickum Marcus Kolga, Leif Hedman, Lars Enochsson, Ann Kjellin, and Li Felländer-Tsai. 2009. Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: A prospective randomized study. World Journal of Surgery, 33, 11, 2360.
[82]
Steam VR toolkit. Retrieved from https://partner.steamgames.com/vrlicensing.
[83]
VRTK. Retrieved from https://vrtoolkit.readme.io/.
[84]
Vive. Retrieved from https://www.vive.com/us/.
[85]
E. G. G. Verdaasdonk, J. Dankelman, J. F. Lange, and L. P. S. Stassen. 2008. Transfer validity of laparoscopic knot-tying training on a VR simulator to a realistic environment: A randomized controlled trial. Surgical Endoscopy, 22, 7, 1636--1642.
[86]
N. R. Howells, H. S. Gill, A. J. Carr, A. J. Price, and J. L. Rees. 2008. Transferring simulated arthroscopic skills to the operating theatre: A randomised blinded study. Bone 8 Joint Journal, 90, 4, 494--499.

Cited By

View all
  • (2024)Emergence of Next generation Digital Twin based Robotic frameworks for Cyber-Human-Physical contexts2024 IEEE International Systems Conference (SysCon)10.1109/SysCon61195.2024.10553534(1-8)Online publication date: 15-Apr-2024
  • (2024)The Potential of virtual reality Digital Twins to serve as therapy approaches for stuttering2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH)10.1109/SeGAH61285.2024.10639574(1-9)Online publication date: 7-Aug-2024
  • (2024)Advanced liver surgery training in collaborative VR environmentsComputers & Graphics10.1016/j.cag.2024.01.006119(103879)Online publication date: Apr-2024
  • Show More Cited By

Index Terms

  1. A Network-Based Virtual Reality Simulation Training Approach for Orthopedic Surgery

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Multimedia Computing, Communications, and Applications
    ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 14, Issue 3
    August 2018
    249 pages
    ISSN:1551-6857
    EISSN:1551-6865
    DOI:10.1145/3241977
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 August 2018
    Accepted: 01 June 2018
    Revised: 01 March 2018
    Received: 01 August 2017
    Published in TOMM Volume 14, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Next Generation Internet technologies
    2. Virtual reality
    3. immersive simulator
    4. medical simulation
    5. orthopedic surgery

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)126
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 01 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Emergence of Next generation Digital Twin based Robotic frameworks for Cyber-Human-Physical contexts2024 IEEE International Systems Conference (SysCon)10.1109/SysCon61195.2024.10553534(1-8)Online publication date: 15-Apr-2024
    • (2024)The Potential of virtual reality Digital Twins to serve as therapy approaches for stuttering2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH)10.1109/SeGAH61285.2024.10639574(1-9)Online publication date: 7-Aug-2024
    • (2024)Advanced liver surgery training in collaborative VR environmentsComputers & Graphics10.1016/j.cag.2024.01.006119(103879)Online publication date: Apr-2024
    • (2024)Evaluating Incentive Based 3D Virtual Training for Nasopharyngeal Swab ProficiencyDigital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management10.1007/978-3-031-61066-0_19(313-325)Online publication date: 1-Jun-2024
    • (2024)A Virtual Reality Based Therapeutic Approach for Stuttering InterventionVirtual, Augmented and Mixed Reality10.1007/978-3-031-61047-9_12(191-203)Online publication date: 29-Jun-2024
    • (2024)Study of Perception and Cognition in Immersive Digital Twins for Robotic Assembly ProcessesVirtual, Augmented and Mixed Reality10.1007/978-3-031-61044-8_11(147-158)Online publication date: 29-Jun-2024
    • (2022)Mechanism to Capture Learners’ Interactions in Virtual Reality Learning Environment2022 International Conference on Advanced Learning Technologies (ICALT)10.1109/ICALT55010.2022.00105(335-337)Online publication date: Jul-2022
    • (2022)Use of Extended Reality in Medical Education: An Integrative ReviewMedical Science Educator10.1007/s40670-022-01698-433:1(275-286)Online publication date: 19-Dec-2022
    • (2021)Hierarchical Task Analysis Reimagined as a Planning Tool for Surgery During Exploration Space FlightSurgical Innovation10.1177/1553350621105321029:5(616-624)Online publication date: 4-Dec-2021
    • (2020)A Review of Training and Guidance Systems in Medical SurgeryApplied Sciences10.3390/app1017575210:17(5752)Online publication date: 20-Aug-2020
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media