Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3233547.3233556acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article
Public Access

Efficient Synthesis of Mutants Using Genetic Crosses

Published: 15 August 2018 Publication History

Abstract

The genetic cross is a fundamental, flexible, and widely-used experimental technique to create new mutant strains from existing ones. Surprisingly, the problem of how to efficiently compute a sequence of crosses that can make a desired target mutant from a set of source mutants has received scarce attention. In this paper, we make three contributions to this question. First, we formulate several natural problems related to efficient synthesis of a target mutant from source mutants. Our formulations capture experimentally-useful notions of verifiability (e.g., the need to confirm that a mutant contains mutations in the desired genes) and permissibility (e.g., the requirement that no intermediate mutants in the synthesis be inviable). Second, we develop combinatorial techniques to solve these problems. We prove that checking the existence of a verifiable, permissible synthesis is \cnp-complete in general. We complement this result with three polynomial time or fixed-parameter tractable algorithms for optimal synthesis of a target mutant for special cases of the problem that arise in practice. Third, we apply these algorithms to simulated data and to synthetic data. We use results from simulations of a mathematical model of the cell cycle to replicate realistic experimental scenarios where a biologist may be interested in creating several mutants in order to verify model predictions. Our results show that the consideration of permissible mutants can affect the existence of a synthesis or the number of crosses in an optimal one. Our algorithms gracefully handle the restrictions that permissible mutants impose. Results on synthetic data show that our algorithms scale well with increases in the size of the input and the fixed parameters.

References

[1]
Neil R Adames, Logan P Schuck, Katherine C Chen, TM Murali, John J Tyson, and Jean Peccoud . 2015. Experimental testing of a new integrated model of the budding yeast Start transition. Molecular biology of the cell Vol. 26, 22 (2015), 3966--3984.
[2]
Joshua F Apgar, Jared E Toettcher, Drew Endy, Forest M White, and Bruce Tidor . 2008. Stimulus design for model selection and validation in cell signaling. PLoS Computational Biology Vol. 4 (Feb . 2008), e30. Issue 2.
[3]
Nir Atias, Michal Gershenzon, Katia Labazin, and Roded Sharan . 2014. Experimental design schemes for learning Boolean network models. Bioinformatics (Oxford, England) Vol. 30 (Sep . 2014), i445--i452. Issue 17.
[4]
Samuel Bandara, Johannes P Schloder, Roland Eils, Hans Georg Bock, and Tobias Meyer . 2009. Optimal experimental design for parameter estimation of a cell signaling model. PLoS Computational Biology Vol. 5 (Nov . 2009), e1000558. Issue 11.
[5]
Christian L Barrett and Bernhard O Palsson . 2006. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Computational Biology Vol. 2 (May . 2006), e52. Issue 5.
[6]
M. Costanzo, B. VanderSluis, E. N. Koch, A. Baryshnikova, C. Pons, G. Tan, W. Wang, M. Usaj, J. Hanchard, S. D. Lee, V. Pelechano, E. B. Styles, M. Billmann, J. van Leeuwen, N. van Dyk, Z. Y. Lin, E. Kuzmin, J. Nelson, J. S. Piotrowski, T. Srikumar, S. Bahr, Y. Chen, R. Deshpande, C. F. Kurat, S. C. Li, Z. Li, M. M. Usaj, H. Okada, N. Pascoe, B. J. San Luis, S. Sharifpoor, E. Shuteriqi, S. W. Simpkins, J. Snider, H. G. Suresh, Y. Tan, H. Zhu, N. Malod-Dognin, V. Janjic, N. Przulj, O. G. Troyanskaya, I. Stagljar, T. Xia, Y. Ohya, A. C. Gingras, B. Raught, M. Boutros, L. M. Steinmetz, C. L. Moore, A. P. Rosebrock, A. A. Caudy, C. L. Myers, B. Andrews, and C. Boone . 2016. A global genetic interaction network maps a wiring diagram of cellular function. Science Vol. 353, 6306 (Sep . 2016).
[7]
Frederick R Cross, Vincent Archambault, Mary Miller, and Martha Klovstad . 2002. Testing a mathematical model of the yeast cell cycle. Molecular biology of the cell Vol. 13, 1 (2002), 52--70.
[8]
D. Deutscher, I. Meilijson, S. Schuster, and E. Ruppin . 2008. Can single knockouts accurately single out gene functions? BMC Systems Biology Vol. 2 (Jun . 2008), 50.
[9]
H. N. Gabow . 1983. An Efficient Reduction Technique for Degree-Constrained Subgraph and Bidirected Network Flow Problems. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25--27 April, 1983, Boston, Massachusetts, USA. 448--456.
[10]
Heather A Harrington, Kenneth L Ho, Thomas Thorne, and Michael P H Stumpf . 2012. Parameter-free model discrimination criterion based on steady-state coplanarity. Proceedings of the National Academy of Sciences of the United States of America Vol. 109 (Sep . 2012), 15746--15751. Issue 39.
[11]
T E Ideker, V Thorsson, and R M Karp . 2000. Discovery of regulatory interactions through perturbation: inference and experimental design. Pacific Symposium on Biocomputing (2000), 305--316.
[12]
P. Klein . 1990. Lecture Notes on Combinatorial Optimization. Technical Report, Dept. of Computer Science, Brown University, Providence, RI.
[13]
Pavel Kraikivski, Katherine C. Chen, Teeraphan Laomettachit, T. M. Murali, and John J. Tyson . 2015. From START to FINISH: Computational Analysis of Cell Cycle Control in Budding Yeast. NPJ Systems Biology and Applications Vol. 1 (2015), 15016.
[14]
Andreas Kremling, Sophia Fischer, Kapil Gadkar, Francis J Doyle, Thomas Sauter, Eric Bullinger, Frank Allgower, and Ernst D Gilles . 2004. A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. Genome Research Vol. 14 (Sep . 2004), 1773--1785. Issue 9.
[15]
Clemens Kreutz and Jens Timmer . 2009. Systems Biology: Experimental Design. The FEBS journal Vol. 276 (Feb . 2009), 923--942. Issue 4.
[16]
Bence Melykuti, Elias August, Antonis Papachristodoulou, and Hana El-Samad . 2010. Discriminating between rival biochemical network models: three approaches to optimal experiment design. BMC Systems Biology Vol. 4 (Apr . 2010), 38.
[17]
R. Niedermeier . 2006. Invitation to Fixed Parameter Algorithms. Oxford University Press, New York, NY.
[18]
David A. Orlando, Charles Y. Lin, Allister Bernard, Jean Y. Wang, Joshua E. S. Socolar, Edwin S. Iversen, Alexander J. Hartemink, and Steven B. Haase . 2008. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature Vol. 453, 7197 (07 May . 2008), 944--947.
[19]
B. Papp, C. Pal, and L. D. Hurst . 2004. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature Vol. 429, 6992 (Jun . 2004), 661--664.
[20]
Edouard Pauwels, Christian Lajaunie, and Jean-Philippe Vert . 2014. A Bayesian active learning strategy for sequential experimental design in systems biology. BMC Systems Biology Vol. 8 (Sep . 2014), 102. Issue 1.
[21]
C. L. Poirel, R. R. Rodrigues, K. C. Chen, J. J. Tyson, and T. M. Murali . 2013. Top-down network analysis to drive bottom-up modeling of physiological processes. Journal of Computational Biology Vol. 20, 5 (May . 2013), 409--418.
[22]
F. Port, H. M. Chen, T. Lee, and S. L. Bullock . 2014. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl. Acad. Sci. U.S.A. Vol. 111, 29 (Jul . 2014), E2967--2976.
[23]
Aditya Pratapa, Neil Adames, Pavel Kraikivski, Nicholas Franzese, John J. Tyson, Jean Peccoud, and T. M. Murali . 2018 a. CrossPlan: Systematic Planning of Genetic Crosses to Validate Mathematical Models. Bioinformatics Vol. 34, 13 (July . 2018), 2237--2244.
[24]
Aditya Pratapa, Amogh P Jalihal, S.S. Ravi, and T.M. Murali . 2018 b. Efficient Synthesis of Mutants Using Genetic Crosses. bioRxiv (2018), 359281.
[25]
Sahand Jamal Rahi, Kresti Pecani, Andrej Ondracka, Catherine Oikonomou, and Frederick R Cross . 2016. The CDK-APC/C oscillator predominantly entrains periodic cell-cycle transcription. Cell Vol. 165, 2 (2016), 475--487.
[26]
D. Segre, A. Deluna, G. M. Church, and R. Kishony . 2005. Modular epistasis in yeast metabolism. Nature Genetics Vol. 37, 1 (Jan . 2005), 77--83.
[27]
Steven Nathaniel Steinway, Jorge Gomez Tejeda Za nudo, Paul J Michel, David J Feith, Thomas P Loughran, and Reka Albert . 2015. Combinatorial interventions inhibit TGF {beta}-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. NPJ Systems Biology and Applications Vol. 1 (2015), 15014.
[28]
Ewa Szczurek, Irit Gat-Viks, Jerzy Tiuryn, and Martin Vingron . 2009. Elucidating regulatory mechanisms downstream of a signaling pathway using informative experiments. Molecular Systems Biology Vol. 5 (2009), 287.
[29]
Chen H. Yeang, H. Craig Mak, Scott McCuine, Christopher Workman, Tommi Jaakkola, and Trey Ideker . 2005. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biology Vol. 6, 7 (2005), R62
[31]
B. Zetsche, M. Heidenreich, P. Mohanraju, I. Fedorova, J. Kneppers, E. M. DeGennaro, N. Winblad, S. R. Choudhury, O. O. Abudayyeh, J. S. Gootenberg, W. Y. Wu, D. A. Scott, K. Severinov, J. van der Oost, and F. Zhang . 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. Vol. 35, 1 (Jan . 2017), 31--34.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
August 2018
727 pages
ISBN:9781450357944
DOI:10.1145/3233547
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 August 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. combinatorial algorithms
  2. experiment planning
  3. fixed-parameter tractability
  4. genetic crosses
  5. mathematical models
  6. multi-gene mutants

Qualifiers

  • Research-article

Funding Sources

Conference

BCB '18
Sponsor:

Acceptance Rates

BCB '18 Paper Acceptance Rate 46 of 148 submissions, 31%;
Overall Acceptance Rate 254 of 885 submissions, 29%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 216
    Total Downloads
  • Downloads (Last 12 months)38
  • Downloads (Last 6 weeks)6
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media