Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3266237.3266275acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbesConference Proceedingsconference-collections
research-article

Multiple objective test set selection for software product line testing: evaluating different preference-based algorithms

Published: 17 September 2018 Publication History

Abstract

The selection of optimal test sets for Software Product Lines (SPLs) is a complex task impacted by many factors and that needs to consider the tester's preferences. To help in this task, Preference-based Evolutionary Multi-objective Algorithms (PEMOAs) have been explored. They use a Reference Point (RP), which represents the user preference and guides the search, resulting in a greater number of solutions in the ROI (Region of Interest). This region contains solutions that are more interesting from the tester's point of view. However, the explored PEMOAs have not been compared yet and the results reported in the literature do not consider many-objective formulations. Such an evaluation is important because in the presence of more than three objectives the performance of the algorithms may change and the number of solutions increases. Considering this fact, this work presents evaluation results of four PEMOAs for selection of products in the SPL testing considering cost, testing criteria coverage, products similarity, and the number of revealed faults, given by the mutation score. The PEMOAs present better performance than traditional algorithms, avoiding uninteresting solutions. We introduce a hyper-heuristic version of the PEMOA R-NSGA-II that presents the best results in a general case.

References

[1]
E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu. 2013. Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 64, 12 (Dec. 2013), 1695.
[2]
D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. 1996. The combinatorial design approach to automatic test generation. IEEE Software 13, 5 (1996), 83--88.
[3]
M. B. Cohen, M. B. Dwyer, and J. Shi. 2006. Coverage and Adequacy in Software Product Line Testing. In Proceedings of ROSATEA'06. ACM, Portland, USA, 53--63.
[4]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 2 (2002), 182--197.
[5]
K. Deb and J. Sundar. 2006. Reference Point Based Multi-objective Optimization Using Evolutionary Algorithms. In Proceedings of GECCO'06. ACM, Seattle, USA, 635--642.
[6]
J. J. Durillo and A.J. Nebro. 2011. jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 42 (2011), 760--771.
[7]
J. M. Ferreira, S. R. Vergilio, and M. A. Quináia. 2017. A Mutation Approach to Feature Testing of Software Product Lines. Int. J. Softw. Eng. Know. 27, 5 (2017), 232--237.
[8]
T. N. Ferreira, J. A. Prado Lima, A. Strickler, J. N. Kuk, S. R. Vergilio, and A. Pozo. 2017. Hyper-heuristic Based Product Selection for Software Product Line Testing. IEEE Comp. Intell. Mag. 12, 2 (May 2017), 34--45.
[9]
T. N. Ferreira, S. R. Vergilio, and J. T. de Souza. 2017. Incorporating User Preferences in Search-Based Software Engineering: A Systematic Mapping Study. Info. Softw. Tech. 90 (2017), 55--69.
[10]
C. Henard, M. Papadakis, M. Harman, and Y. Le Traon. 2015. Combining Multi-Objective Search and Constraint Solving for Configuring Large Software Product Lines. In Proceedings of ICSE'15, Vol. 1. IEEE, Florence, Italy, 517--528.
[11]
C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon. 2014. Bypassing the combinatorial explosion: Using similarity to generate and prioritize T-wise test configurations for software product lines. IEEE Trans. Softw. Eng. 40, 7 (2014), 650--670.
[12]
P. Jaccard. 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles 44 (1908), 223--270.
[13]
H. L. Jakubovski-Filho, T. N. Ferreira, and S. R. Vergilio. 2018. Incorporating User Preferences in a Software Product Line Testing Hyper-Heuristic Approach. In Proceedings of CEC'18. IEEE, Rio de Janeiro, Brazil, 2283--2290.
[14]
H. L. Jakubovski-Filho, T. N. Ferreira, and S. R. Vergilio. 2018. Preference Based Multi-Objective Algorithms Applied to the Variability Testing of Software Product Lines. J. Syst. Softw. (2018). Under Review.
[15]
S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said. 2013. Preference-based many-objective evolutionary testing generates harder test cases for autonomous agents. In Proceedings of SSBSE'13. Springer, St. Petersburg, Russia, 245--250.
[16]
K. C. Kang, J. Lee, and P. Donohoe. 2002. Feature-Oriented Project Line Engineering. IEEE Software 19, 4 (July 2002), 58--65.
[17]
C. H. P. Kim, D. S. Batory, and S. Khurshid. 2011. Reducing Combinatorics in Testing Product Lines. In Proceedings of AOSD'11. ACM, Porto de Galinhas, Brazil, 57--68.
[18]
C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros, and M. D'Amorim. 2013. SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in Testing Configurable Systems. In Proceedings of FSE. ACM, Saint Petersburg, Russia, 257--267.
[19]
B. P. Lamancha and M. P. Usaola. 2010. Testing product generation in software product lines using pairwise for features coverage. In Proceedings of ICTSS'10. Springer, Natal, Brazil, 111--125.
[20]
K. Li, K. Deb, and X. Yao. 2017. R-Metric: Evaluating the Performance of Preference-Based Evolutionary Multi-Objective Optimization Using Reference Points. IEEE Trans. Evol. Comput. (2017), 1--15.
[21]
K. Li, A. Fialho, S. Kwong, and Q. Zhang. 2014 Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 18, 1 (Feb. 2014), 114--130.
[22]
M. Li, T. Chen, and X. Yao. 2018. A Critical Review of "A Practical Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms in Search-Based Software Engineering": Essay on Quality Indicator Selection for SBSE. In Proceedings of ICSE'18. ACM, Gothenburg, Sweden.
[23]
R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba. 2013. Multi-objective optimal test suite computation for software product line pairwise testing. In Proceedings of ICSM'13. IEEE, Eindhoven, The Netherlands, 404--407.
[24]
B. Marculescu, R. Feldt, and R. Torkar. 2012. A concept for an interactive search-based software testing system. In Proceedings of SSBSE'12. Springer, Riva del Garda, Italy, 273--278.
[25]
B. Marculescu, R. Feldt, and R. Torkar. 2013. Objective re-weighting to guide an interactive search based software testing system. In Proceedings of ICMLA'13. IEEE, Miami, USA.
[26]
R. A. Matnei-Filho and S. R. Vergilio. 2016. A multi-objective test data generation approach for mutation testing of feature models. J. Softw. Eng. Res. Dev. 4, 1 (2016), 1--29.
[27]
S. Oster, M. Zink, M. Lochau, and M. Grechanik. 2011. Pairwise feature-interaction testing for SPLs: Potentials and limitations. In Proceedings of SPLC'11, Vol. 2. ACM, Munich, Germany, 1--8.
[28]
D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, and U. Kelter. 2015. Fault-based Product-line Testing: Effective Sample Generation Based on Feature-diagram Mutation. In Proceedings of SPLC'15. ACM, Nashville, USA, 131--140.
[29]
L. B. Said, S. Bechikh, and K Ghédira. 2010. The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans. Evol. Comput. 14, 5 (2010), 801--818.
[30]
A. S. Sayyad, T. Menzies, and H. Ammar. 2013. On the Value of User Preferences in Search-based Software Engineering: A Case Study in Software Product Lines. In Proceedings of ICSE'13. IEEE Press, San Francisco, USA, 492--501.
[31]
A. Strickler, J. A. Prado Lima, S. R. Vergilio, and A. T. R. Pozo. 2016. Deriving products for variability test of Feature Models with a hyper-heuristic approach. Appl. Softw. Comput. 49 (2016), 1232--1242.
[32]
H. Takagi. 2001. Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of IEEE'01 89, 9 (September 2001), 1275--1296.
[33]
P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. 2008. FaMa framework. In Proceedings of SPLC'08. IEEE, Limerick, Ireland, 359--359.
[34]
A. E. E. Yamany and M. S. Elgamel. 2015. Smart OptiSelect Preference Based Innovative Framework for User-in-the-Loop Feature Selection in Software Product Lines. In Proceedings of ICIT'15. ACM, Amman, Jordan, 657--666.
[35]
A. E. E. Yamany, M. Shaheen, and A. S. Sayyad. 2014. OPTI-SELECT: An interactive tool for user-in-the-loop feature selection in software product lines. In Proceedings of SPLC'14. ACM, Florence, Italy, 126--129.
[36]
E. Zitzler. 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Dissertation. ETH Zurich, Switzerland.

Cited By

View all
  • (2022)Learning how to search: generating effective test cases through adaptive fitness function selectionEmpirical Software Engineering10.1007/s10664-021-10048-827:2Online publication date: 11-Jan-2022
  • (2021)Implementing Search-Based Software Engineering Approaches with NautilusProceedings of the XXXV Brazilian Symposium on Software Engineering10.1145/3474624.3476010(303-308)Online publication date: 27-Sep-2021
  • (2019)A systematic mapping addressing Hyper-Heuristics within Search-based Software TestingInformation and Software Technology10.1016/j.infsof.2019.06.012114:C(176-189)Online publication date: 1-Oct-2019

Index Terms

  1. Multiple objective test set selection for software product line testing: evaluating different preference-based algorithms

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SBES '18: Proceedings of the XXXII Brazilian Symposium on Software Engineering
    September 2018
    379 pages
    ISBN:9781450365031
    DOI:10.1145/3266237
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 September 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. preference-based multi-objective algorithms
    2. search-based software engineering
    3. software product line testing

    Qualifiers

    • Research-article

    Conference

    SBES '18
    SBES '18: XXXII BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING
    September 17 - 21, 2018
    Sao Carlos, Brazil

    Acceptance Rates

    SBES '18 Paper Acceptance Rate 38 of 140 submissions, 27%;
    Overall Acceptance Rate 147 of 427 submissions, 34%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Learning how to search: generating effective test cases through adaptive fitness function selectionEmpirical Software Engineering10.1007/s10664-021-10048-827:2Online publication date: 11-Jan-2022
    • (2021)Implementing Search-Based Software Engineering Approaches with NautilusProceedings of the XXXV Brazilian Symposium on Software Engineering10.1145/3474624.3476010(303-308)Online publication date: 27-Sep-2021
    • (2019)A systematic mapping addressing Hyper-Heuristics within Search-based Software TestingInformation and Software Technology10.1016/j.infsof.2019.06.012114:C(176-189)Online publication date: 1-Oct-2019

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media