Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3274895.3274898acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article
Public Access

DOS: a spatial system offering extremely high-throughput road distance computations

Published: 06 November 2018 Publication History
  • Get Citation Alerts
  • Abstract

    Large analytic applications on road networks including simulations, logistics, location-based advertisement, and transportation planning require shortest distance/time methods that provide high throughput (i.e., distance/time computations per second). Our previous work discussed how to process graph distance computations in a PostgreSQL database on a large road network, e.g., 60K distance computations per second per machine, how to "scale out" by using a Spark cluster to achieve 73.8K distance computations per second per machine, and how to obtain a extremely high-throughput solution in memory for city-sized road networks, e.g., 6.7M distance computations per second. However, there is no solution that could achieve more than 1M throughput for large road networks. In an industrial setting, most state-of-the-art solutions yield 5K - 10K shortest distance computations per second per machine even with multi-threads. In this paper, we propose a new distance oracle system (DOS) for large road networks. It can solve most spatial analytic queries, and its throughput achieves 5M distance computations per second even on the whole USA road network. For example, a 10K × 10K origin-distance (OD) matrix can be computed in 20 seconds.

    References

    [1]
    {n. d.}. DIMACS. http://www.dis.uniroma1.it/challenge9.
    [2]
    {n. d.}. Fast food maps. http://www.fastfoodmaps.com/.
    [3]
    {n. d.}. Flatbuffers. https://google.github.io/flatbuffers/.
    [4]
    {n. d.}. GeoNames. http://www.geonames.org/.
    [5]
    {n. d.}. Google Maps API. https://developers.google.com/maps/.
    [6]
    {n. d.}. LODES. http://lehd.ces.census.gov/data/.
    [7]
    {n. d.}. OpenStreetMap. http://www.openstreetmap.org/.
    [8]
    {n. d.}. Protocol Buffers. https://github.com/google/protobuf/.
    [9]
    {n. d.}. RDI. http://www.slideshare.net/CongressfortheNewUrbanism/andy-mortensonmeasuring-transportation-connectivity-by-rdi/.
    [10]
    {n. d.}. TAREEG. http://tareeg.org/.
    [11]
    I. Abraham, D. Delling, A. Fiat, A. Goldberg, and R. Werneck. 2012. HLDB: Location-based services in databases. In ACM GIS. Redondo Beach, CA, 339--348.
    [12]
    I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. 2011. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In SEA. Kolimpari Chania, Greece, 230--241.
    [13]
    I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. 2012. Hierarchical Hub Labelings for Shortest Paths. In ESA. Ljubljana, Slovenia, 24--35.
    [14]
    H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. 2007. In Transit to Constant Time Shortest-Path Queries in Road Networks. In ALENEX. New Orleans, LA, 46--59.
    [15]
    P. B. Callahan. 1995. Dealing with higher dimensions: The well-separated pair decomposition and its applications. Ph.D. Dissertation. The Johns Hopkins University, Baltimore, MD.
    [16]
    P. B. Callahan and S. R. Kosaraju. 1995. A Decomposition of Multidimensional Point Sets with Applications to k-Nearest-Neighbors and n-Body Potential Fields. J. ACM 42, 1 (1995), 67--90.
    [17]
    L. Chang, J. Xu Yu, L. Qin, H. Cheng, and M. Qiao. 2012. The exact distance to destination in undirected world. VLDB J. 21, 6 (Dec 2012), 869--888.
    [18]
    D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. 2011. Customizable Route Planning. In SEA. Kolimpari Chania, Greece, 376--387.
    [19]
    D. Delling, P. Sanders, D. Schultes, and D. Wagner. 2009. Engineering Route Planning Algorithms. In Algorithmics of Large and Complex Networks. Springer, Berlin, 117--139.
    [20]
    E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1959), 269--271.
    [21]
    C. Esperança and H. Samet. 2002. Experience with SAND/Tcl: a scripting tool for spatial databases. JVLC 13, 2 (Apr 2002), 229--255.
    [22]
    R. Geisberger, P. Sanders, D. Schultes, and D. Delling. 2008. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In WEA. Cape Cod, MA, 319--333.
    [23]
    A. V. Goldberg, H. Kaplan, and R. F. Werneck. 2006. Reach for A*: Efficient Point-to-Point Shortest Path Algorithms. In ALENEX. Miami, FL, 129--143.
    [24]
    N. Linial, E. London, and Y. Rabinovich. 1995. The geometry of graphs and some of its algorithmic applications. Combinatorica 15 (Jun 1995), 215--245.
    [25]
    S. Ma, K. Feng, H. Wang, J. Li, and J. Huai. 2014. Distance Landmarks Revisited for Road Graphs. CoRR abs/1401.2690 (Jan 2014).
    [26]
    S. Nutanong, E. H. Jacox, and H. Samet. 2011. An incremental Hausdorff distance calculation algorithm. PVLDB 4, 8 (Aug 2011), 506--517.
    [27]
    S. Peng and H. Samet. 2015. Analytical Queries on Road Networks: An Experimental Evaluation of Two System Architectures. In ACM GIS. Seattle, WA, 1:1--1:10.
    [28]
    S. Peng and H. Samet. 2016. CDO: Extremely High-Throughput Road Distance Computations on City Road Networks. In ACM GIS. Burlingame, CA, 84:1--84:4.
    [29]
    S. Peng, J. Sankaranarayanan, and H. Samet. 2016. SPDO: High-Throughput Road Distance Computations on Spark Using Distance Oracles. In ICDE. Helsinki, Finland, 1239--1250.
    [30]
    M. Qiao, H. Cheng, L. Chang, and J. Xu Yu. 2014. Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme. TKDE 26, 1 (Jan 2014), 55--68.
    [31]
    H. Samet. 2006. Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann, San Francisco, CA.
    [32]
    H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason, F. Morgan, and E. Tanin. 2003. Use of the SAND spatial browser for digital government applications. CACM 46, 1 (Jan 2003), 63--66.
    [33]
    P. Sanders and D. Schultes. 2006. Engineering Highway Hierarchies. In ESA. Zurich, Switzerland, 804--816.
    [34]
    J. Sankaranarayanan, H. Alborzi, and H. Samet. 2006. Distance Join Queries on Spatial Networks. In ACM GIS. Arlington, VA, 211--218.
    [35]
    J. Sankaranarayanan and H. Samet. 2009. Distance oracles for spatial networks. In ICDE. Shanghai, China, 652--663.
    [36]
    J. Sankaranarayanan and H. Samet. 2010. Query processing using distance oracles for spatial networks. TKDE 22, 8 (Aug 2010), 1158--1175.
    [37]
    J. Sankaranarayanan and H. Samet. 2010. Roads belong in databases. Data Engineering Bulletin 33, 2 (Jun 2010), 4--11.
    [38]
    J. Sankaranarayanan, H. Samet, and H. Alborzi. 2009. Path oracles for spatial networks. PVLDB 2, 1 (Aug 2009), 1210--1221.
    [39]
    C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. 2003. A road network embedding technique for k-nearest neighbor search in moving object databases. GeoInformatica 7, 3 (Sep 2003), 255--273.
    [40]
    E. Tanin, A. Harwood, and H. Samet. 2005. A distributed quadtree index for peer-to-peer settings. In ICDE. Tokyo, Japan, 254--255.
    [41]
    D. Wagner and T. Willhalm. 2003. Geometric speed-up techniques for finding shortest paths in large sparse graphs. In ESA. Budapest, Hungary, 776--787.
    [42]
    L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. 2012. Shortest Path and Distance Queries on Road Networks: An Experimental Evaluation. PVLDB 5, 5 (Jan 2012), 406--417.
    [43]
    A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. 2013. Shortest path and distance queries on road networks: Towards bridging theory and practice. In SIGMOD. New York, 857--868.

    Cited By

    View all
    • (2023)In-Path Oracles for Road NetworksISPRS International Journal of Geo-Information10.3390/ijgi1207027712:7(277)Online publication date: 13-Jul-2023
    • (2023)Opportunistic package delivery as a service on road networksGeoInformatica10.1007/s10707-023-00497-228:1(53-88)Online publication date: 3-Jun-2023
    • (2019)A Data-driven Framework for Long-Range Aircraft Conflict Detection and ResolutionACM Transactions on Spatial Algorithms and Systems10.1145/33288325:4(1-23)Online publication date: 12-Sep-2019

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGSPATIAL '18: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
    November 2018
    655 pages
    ISBN:9781450358897
    DOI:10.1145/3274895
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 November 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. distance oracle
    2. high-throughput
    3. spatial analytic query

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SIGSPATIAL '18
    Sponsor:

    Acceptance Rates

    SIGSPATIAL '18 Paper Acceptance Rate 30 of 150 submissions, 20%;
    Overall Acceptance Rate 220 of 1,116 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)75
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)In-Path Oracles for Road NetworksISPRS International Journal of Geo-Information10.3390/ijgi1207027712:7(277)Online publication date: 13-Jul-2023
    • (2023)Opportunistic package delivery as a service on road networksGeoInformatica10.1007/s10707-023-00497-228:1(53-88)Online publication date: 3-Jun-2023
    • (2019)A Data-driven Framework for Long-Range Aircraft Conflict Detection and ResolutionACM Transactions on Spatial Algorithms and Systems10.1145/33288325:4(1-23)Online publication date: 12-Sep-2019

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media