Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3274895.3274940acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
short-paper
Open access

Intelligent geovisualizations for open government data (vision paper)

Published: 06 November 2018 Publication History

Abstract

Open government datasets (OGD) have been flooding the Web in recent years. Geovisualisations are the natural way of making sense of them, and have been gradually coming out. However, one key problem is the lack of flexibility of these visualizations, which severely limits their re-use in new scenarios. This article therefore proposes to increase the intelligence of existing geovisualisations by incorporating five features, to make better use of OGD: (i) automatic geographic data type recognition, (ii) generation of geovisualisation designs, (iii) monitoring of users' understanding of geographic facts, (iv) self-optimization, and (v) user activity recognition. In addition to benefiting users of OGD, realizing these features presents rich scientific challenges and opportunities for Geovisualization research, the OGD landscape (and beyond).

References

[1]
James S Albus. 1991. Outline for a theory of intelligence. IEEE Trans. on Systems, Man, and Cybernetics 21, 3 (1991), 473--509.
[2]
Gennady Andrienko and Natalia Andrienko. 1998. Intelligent visualization and dynamic manipulation: two complementary instruments to support data exploration with GIS. In Proceedings of AVI'98. 66--75.
[3]
Natalia Andrienko and Gennady Andrienko. 2001. Intelligent support for geographic data analysis and decision making in the web. Journal of Geographic Information and Decision Analysis 5, 2 (2001), 115--128.
[4]
Natalia Andrienko and Gennady Andrienko. 2007. Intelligent visualisation and information presentation for civil crisis management. Transactions in GIS 11, 6 (dec 2007), 889--909.
[5]
Lukas Barth, Benjamin Niedermann, Martin Nöllenburg, and Darren Strash. 2016. Temporal map labeling: a new unified framework with experiments. In Proceedings of SIGSPATIAL 2016. 1--10.
[6]
Christian Beilschmidt, Thomas Fober, Michael Mattig, and Bernhard Seeger. 2017. A linear-time algorithm for the aggregation and visualization of big spatial point data. In SIGSPATIAL 2017. 73:1--73:4.
[7]
Jacques Bertin. 1983. Semiology of graphics: diagrams, networks, maps (Translated by William J. Berg). The University of Wisconsin Press, Madison.
[8]
Robert Brauneis and Ellen P. Goodman. 2018. Algorithmic transparency for the smart city. Yale Journal of Law & Technology (2018).
[9]
Sabrina Bresciani and Martin J. Eppler. 2015. The pitfalls of visual representations. SAGE Open 5, 4 (dec 2015), 1--14.
[10]
Lili Cao and John Krumm. 2009. From GPS traces to a routable road map. In Proceedings of SIGSPATIAL 2009. 3--12.
[11]
Auriol Degbelo. 2017. Linked data and visualization: two sides of the transparency coin. In Proceedings of UrbanGIS'17. 1--8.
[12]
Auriol Degbelo and Tomi Kauppinen. 2018. Increasing transparency through web maps. In Companion of Proceedings of the Web Conference 2018. 899--904.
[13]
David Duran, Vera Sacristán, and Rodrigo Silveira. 2016. Map construction algorithms: an evaluation through hiking data. In Proceedings of MobiGIS'16. Burlingame, California, USA, 74--83.
[14]
Sara I Fabrikant. 2001. Building task-ontologies for geovisualization. ICA Pre-Conference Workshop on Geovisualization on the Web (2001).
[15]
Thore Fechner and Christian Kray. 2014. Georeferenced open data and augmented interactive geo-visualizations as catalysts for citizen engagement. eJournal of eDemocracy and Open Government 6, 1 (2014), 14--35.
[16]
Karine Reis Ferreira, Gilberto Camara, and Antônio Miguel Vieira Monteiro. 2014. An algebra for spatiotemporal data: from observations to events. Transactions in GIS 18, 2 (apr 2014), 253--269.
[17]
Alvaro Graves and James Hendler. 2013. Visualization tools for open government data. In 14th Annual International Conference on Digital Government Research.
[18]
Anthony Jameson and Wolfgang Wahlster. 1982. User modelling in anaphora generation: ellipsis and definite description. In Proceedings of the 5th European Conference on Artificial Intelligence. Paris, France, 222--227.
[19]
Robert B. Kent and Richard E. Klosterman. 2000. GIS and mapping. Journal of the American Planning Association 66, 2 (jun 2000), 189--198.
[20]
Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal. 2013. Using eye movements to recognize activities on cartographic maps. In Proceedings of ACM SIGSPATIAL 2013. 488--491.
[21]
Jill H. Larkin and Herbert A. Simon. 1987. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11, 1 (jan 1987), 65--100.
[22]
Jock Mackinlay. 1986. Automating the design of graphical presentations of relational information. ACM Transactions on Graphics 5, 2 (apr 1986), 110--141.
[23]
Michele Mauri, Tommaso Elli, Giorgio Caviglia, Giorgio Uboldi, and Matteo Azzi. 2017. RAWGraphs: a visualisation platform to create open outputs. In Proceedings of CHItaly '17. Cagliari, Italy, 1--5.
[24]
Mark Monmonier. 2005. Lying with maps. Statist. Sci. 20, 3 (2005), 215--222.
[25]
Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith, Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge as constraints: actionable and extensible models in Draco. IEEE TVCG (2018).
[26]
Antti Oulasvirta. 2017. User interface design with combinatorial optimization. Computer 50, 1 (jan 2017), 40--47.
[27]
Shangfu Peng, Hanan Samet, and Marco Adelfio. 2014. Viewing streaming spatially-referenced data at interactive rates. In ACM SIGSPATIAL 2014. 409--412.
[28]
Jonathan Roberts. 2008. Coordinated multiple views for exploratory geovisualization. In Geographic Visualization. John Wiley & Sons, Ltd, 25--48.
[29]
Robert E. Roth. 2013. An empirically-derived taxonomy of interaction primitives for interactive cartography and geovisualization. IEEE Trans. on Vis. and Computer Graphics 19, 12 (2013), 2356--2365.
[30]
Robert E Roth. 2013. Interactive maps: What we know and what we need to know. JOSIS 6 (2013), 59--115.
[31]
Robert E. Roth. 2017. Visual variables. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd, 1--11.
[32]
Simon Scheider, Benedikt Gräler, Edzer Pebesma, and Christoph Stasch. 2016. Modeling spatiotemporal information generation. Int. J. Geogr. Inf. Sci. 30, 10 (mar 2016), 1980--2008.
[33]
Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and innovation. Commun. ACM 50, 12 (dec 2007), 20--32.
[34]
Christoph Stasch, Simon Scheider, Edzer Pebesma, and Werner Kuhn. 2014. Meaningful spatial prediction and aggregation. Environmental Modelling & Software 51 (2014), 149--165.
[35]
S S Stevens. 1946. On the theory of scales of measurement. Science 103, 2684 (1946), 677--680.
[36]
Alex S. Taylor. 2009. Machine intelligence. In Proceedings of the 27th international conference on Human factors in computing systems - CHI 09. 2109--2118.
[37]
David Thevenin and Joëlle Coutaz. 1999. Plasticity of user interfaces: framework and research agenda. In Proceedings of INTERACT '99. 110--117.
[38]
Thomas van Dijk and Alexander Wolff. 2017. Algorithmically-guided user interaction. In Proceedings of ACM SIGSPATIAL 2017 (SIGSPATIAL'17). 11:1--11:4.
[39]
Alvaro Videla. 2017. Metaphors we compute by. Commun. ACM 60, 10 (2017).
[40]
Luis von Ahn. 2009. Human computation. In Proceedings of the 46th Annual Design Automation Conference on ZZZ - DAC '09. 418--419.
[41]
Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2016. Voyager: exploratory analysis via faceted browsing of visualization recommendations. IEEE TVCG 22, 1 (jan 2016), 649--658.
[42]
Wang Yingjie, Liu Yue, Chen Xiaogang, Chen Yufen, and Liqiu Meng. 2001. Adaptive geovisualization: an approach towards the design of intelligent geovisualization systems. Journal of Geographical Sciences 11, S1 (dec 2001), 1--8.
[43]
Harlan Yu and David G. Robinson. 2012. The new ambiguity of 'open government'. UCLA Law Review 59, 178 (2012).
[44]
Olmo Zavala-Romero, Eric P. Chassignet, Jorge Zavala-Hidalgo, Panagiotis Velissariou, Harshul Pandav, and Anke Meyer-Baese. 2014. OWGIS 2.0: open source Java application that builds web GIS interfaces for desktop and mobile devices. In ACM SIGSPATIAL 2014. 311--320.

Cited By

View all
  • (2024)User Performance Modelling for Spatial Entities Comparison with Geodashboards: Using View Quality and Distractor as ConceptsCompanion Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems10.1145/3660515.3661325(7-14)Online publication date: 24-Jun-2024
  • (2023)Desiderata for Intelligent Maps: A Multiperspective CompilationDesiderata für intelligente Karten: Eine multiperspektivische ZusammenstellungKN - Journal of Cartography and Geographic Information10.1007/s42489-023-00142-w73:3(183-198)Online publication date: 17-Jun-2023
  • (2023)An Exploratory Study of Models of Mobile Map User ExperienceEine explorative Studie über Modelle der Nutzererfahrung bei mobilen KartenKN - Journal of Cartography and Geographic Information10.1007/s42489-023-00136-873:2(127-146)Online publication date: 29-Apr-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSPATIAL '18: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2018
655 pages
ISBN:9781450358897
DOI:10.1145/3274895
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. adaptive systems
  2. computer-generated user interfaces
  3. geovisualisation
  4. intelligent systems
  5. open government data

Qualifiers

  • Short-paper

Funding Sources

Conference

SIGSPATIAL '18
Sponsor:

Acceptance Rates

SIGSPATIAL '18 Paper Acceptance Rate 30 of 150 submissions, 20%;
Overall Acceptance Rate 220 of 1,116 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)71
  • Downloads (Last 6 weeks)14
Reflects downloads up to 01 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)User Performance Modelling for Spatial Entities Comparison with Geodashboards: Using View Quality and Distractor as ConceptsCompanion Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems10.1145/3660515.3661325(7-14)Online publication date: 24-Jun-2024
  • (2023)Desiderata for Intelligent Maps: A Multiperspective CompilationDesiderata für intelligente Karten: Eine multiperspektivische ZusammenstellungKN - Journal of Cartography and Geographic Information10.1007/s42489-023-00142-w73:3(183-198)Online publication date: 17-Jun-2023
  • (2023)An Exploratory Study of Models of Mobile Map User ExperienceEine explorative Studie über Modelle der Nutzererfahrung bei mobilen KartenKN - Journal of Cartography and Geographic Information10.1007/s42489-023-00136-873:2(127-146)Online publication date: 29-Apr-2023
  • (2022)Choriented Maps: Visualizing SDG Data on Mobile DevicesThe Cartographic Journal10.1080/00087041.2021.198661659:1(35-54)Online publication date: 19-Jul-2022
  • (2021)FAIR geovisualizations: definitions, challenges, and the road aheadInternational Journal of Geographical Information Science10.1080/13658816.2021.198357936:6(1059-1099)Online publication date: 28-Oct-2021
  • (2019)Spatial search strategies for open government dataProceedings of the 13th Workshop on Geographic Information Retrieval10.1145/3371140.3371142(1-10)Online publication date: 28-Nov-2019
  • (2019)Data scale as cartography: a semi-automatic approach for thematic web map creationCartography and Geographic Information Science10.1080/15230406.2019.1677176(1-18)Online publication date: 5-Nov-2019
  • (2018)A Comparison of Geovisualizations and Data Tables for Transparency Enablement in the Open Government Data LandscapeInternational Journal of Electronic Government Research10.4018/IJEGR.201810010414:4(39-64)Online publication date: Oct-2018

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media