Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Improved Hieroglyph Representation for Image Retrieval

Published: 30 April 2019 Publication History

Abstract

In recent years, an interdisciplinary effort between archaeologists and computer vision experts has emerged to provide image retrieval tools that facilitate and support cultural heritage preservation. The performance of these tools largely depends on the hieroglyph representation quality. In the literature, the most successful hieroglyph representation for retrieval following the BoVW model includes a thinning hieroglyph process and selects interest points through uniform random sampling. However, thinned hieroglyphs could have noise or redundant information, and a random set of interest points could include non-useful interest points that are different in each iteration. In this article, we propose improving this hieroglyph representation by pruning thinned hieroglyphs and introducing an improved interest-point selection. Our experiments show that our proposal significantly improves the hieroglyph retrieval results of state-of-the-art methods.

References

[1]
X. Bai, L. J. Latecki, and W.-y. Liu. 2007. Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29, 3 (March 2007), 449--462.
[2]
S. Belongie, J. Malik, and J. Puzicha. 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4 (Apr. 2002), 509--522.
[3]
Gülcan Can, Jean-Marc Odobez, and Daniel Gatica-Perez. 2017. Shape representations for Maya codical glyphs: Knowledge-driven or deep? In Proceedings of the 15th International Workshop on Content-based Multimedia Indexing (CBMI’17). ACM, Article 32, 6 pages.
[4]
Gülcan Can, Jean-Marc Odobez, and Daniel Gatica-Perez. 2018. How to tell ancient signs apart? Recognizing and visualizing Maya glyphs with CNNs. ACM J. Comput. Cult. Her. (May 2018).
[5]
Vincenzo Deufemia and Luca Paolino. 2013. Combining unsupervised clustering with a non-linear deformation model for efficient petroglyph recognition. In Advances in Visual Computing, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Baoxin Li, Fatih Porikli, Victor Zordan, James Klosowski, Sabine Coquillart, Xun Luo, Min Chen, and David Gotz (Eds.). Springer Berlin, 128--137.
[6]
Vincenzo Deufemia and Luca Paolino. 2014. Segmentation and recognition of petroglyphs using generic Fourier descriptors. In Image and Signal Processing, Abderrahim Elmoataz, Olivier Lezoray, Fathallah Nouboud, and Driss Mammass (Eds.). Springer International Publishing, Cham, 487--494.
[7]
V. Deufemia, L. Paolino, and H. de Lumley. 2012. Petroglyph recognition using self-organizing maps and fuzzy visual language parsing. In Proceedings of the IEEE 24th International Conference on Tools with Artificial Intelligence, Vol. 1. 852--859.
[8]
David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geogr. Inform. Geovis. 10, 2 (1973), 112--122.
[9]
Jaime Duque-Domingo, Pedro Javier Herrera, Enrique Valero, and Carlos Cerrada. 2017. Deciphering Egyptian hieroglyphs: Towards a new strategy for navigation in museums. Sensors 17, 3 (2017).
[10]
Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ. 653--655.
[11]
Rui Hu, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2017. Analyzing and visualizing ancient Maya hieroglyphics using shape: From computer vision to digital humanities. Dig. Schol. Hum. 32 (2017), 179--194.
[12]
J. K. Lakshmi and M. Punithavalli. 2009. A survey on skeletons in digital image processing. In Proceedings of the International Conference on Digital Image Processing. 260--269.
[13]
Longin Jan Latecki and Rolf Lakämper. 1999. Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Und. 73 (1999), 441--454.
[14]
Longin Jan Latecki and Rolf Lakämper. 1999. Polygon evolution by vertex deletion. In Proceedings of the 2nd International Conference on Scale-Space Theories in Computer Vision (SCALE-SPACE’99). Springer-Verlag, 398--409.
[15]
Hongzhi Liu, Zhonghai Wu, D. Frank Hsu, Bradley S. Peterson, and Dongrong Xu. 2012. On the generation and pruning of skeletons using generalized Voronoi diagrams. Pattern Recog. Lett. 33, 16 (2012), 2113-2119.
[16]
HongZhi Liu, Zhong-Hai Wu, Xing Zhang, and D. Frank Hsu. 2013. A skeleton pruning algorithm based on information fusion. Pattern Recog. Lett. 34, 10 (2013), 1138--1145.
[17]
David G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 2 (2004), 91--110.
[18]
Krystian Mikolajczyk and Cordelia Schmid. 2004. Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 1 (2004), 63--86.
[19]
Greg Mori, Serge Belongie, and Jitendra Malik. 2005. Efficient shape matching using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 27, 11 (Nov. 2005), 1832--1837.
[20]
Thanh Phuong Nguyen and Isabelle Debled-Rennesson. 2011. A discrete geometry approach for dominant point detection. Pattern Recog. 44, 1 (2011), 32--44.
[21]
Laura Alejandra Pinilla-Buitrago, José Fco. Martínez-Trinidad, and J. A. Carrasco-Ochoa. 2014. A new method for skeleton pruning. In Pattern Recog., José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, José Arturo Olvera-Lopez, Joaquín Salas-Rodríguez, and Ching Y. Suen (Eds.). Lecture Notes in Computer Science, Vol. 8495. Springer International Publishing, 301--310.
[22]
D. K. Prasad, Chai Quek, M. K. H. Leung, and Siu-Yeung Cho. 2011. A parameter independent line fitting method. In Proceedings of the 1st Asian Conference on Pattern Recognition (ACPR’11). 441--445.
[23]
Edgar Roman-Rangel and Stephane Marchand-Maillet. 2014. HOOSC128: A more robust local shape descriptor. In Pattern Recog., José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, José Arturo Olvera-Lopez, Joaquín Salas-Rodríguez, and Ching Y. Suen (Eds.). Lecture Notes in Computer Science, Vol. 8495. Springer International Publishing, 172--181.
[24]
Edgar Roman-Rangel and Stephane Marchand-Maillet. 2015. Shape-based detection of Maya hieroglyphs using weighted bag representations. Pattern Recog. 48, 4 (2015), 1161--1173.
[25]
Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2011. Analyzing ancient Maya glyph collections with contextual shape descriptors. Int. J. Comput. Vis. 94, 1 (2011), 101--117.
[26]
Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2011. Searching the past: An improved shape descriptor to retrieve Maya hieroglyphs. In Proceedings of the 19th ACM International Conference on Multimedia (MM’11). ACM, 163--172.
[27]
Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2013. Evaluating shape descriptors for detection of Maya hieroglyphs. In Pattern Recog., Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad, Joaquín Salas Rodríguez, and Gabriella Sanniti di Baja (Eds.). Lecture Notes in Computer Science, Vol. 7914. Springer Berlin, 145--154.
[28]
Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. 2016. A survey on skeletonization algorithms and their applications. Pattern Recog. Lett. 76 (2016), 3--12. Special Issue on Skeletonization and Its Application.
[29]
Markus Seidl. 2016. Computation Analysis of Petroglyphs. Ph.D. Dissertation. Technische Universitat Wien, Vienna, Austria.
[30]
Markus Seidl and Christian Breiteneder. 2011. Detection and classification of petroglyphs in gigapixel images. In Proceedings of the International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage (VAST’11)—Short and Project Papers, Franco Niccolucci, Matteo Dellepiane, Sebastian Pena Serna, Holly Rushmeier, and Luc Van Gool (Eds.). The Eurographics Association.
[31]
Markus Seidl, Ewald Wieser, and Craig Alexander. 2015. Automated classification of petroglyphs. Dig. Appl. Arch. Cult. Her. 2, 2 (2015), 196--212.
[32]
Markus Seidl, Ewald Wieser, Matthias Zeppelzauer, Axel Pinz, and Christian Breiteneder. 2015. Graph-based shape similarity of petroglyphs. In Computer Vision—ECCV 2014 Workshops, Lourdes Agapito, Michael M. Bronstein, and Carsten Rother (Eds.). Springer International Publishing, Cham, 133--148.
[33]
Luca Serino and Gabriella Sanniti di Baja. 2016. A new strategy for skeleton pruning. Pattern Recog. Lett. 76, Supplement C (2016), 41--48. Special Issue on Skeletonization and Its Application.
[34]
Wei Shen, Xiang Bai, Rong Hu, Hongyuan Wang, and Longin Jan Latecki. 2011. Skeleton growing and pruning with bending potential ratio. Pattern Recog. 44, 2 (2011), 196--209.
[35]
Wei Shen, Xiang Bai, Xingwei Yang, and Longin Jan Latecki. 2013. Skeleton pruning as trade-off between skeleton simplicity and reconstruction error. Sci. China Inform. Sci. 56, 4 (Apr. 2013), 1--14.
[36]
J. Eric S. Thompson. 1962. A Catalog of Maya Hieroglyphs. University of Oklahoma Press.
[37]
Xinggang Wang, Bin Feng, Xiang Bai, Wenyu Liu, and Longin Jan Latecki. 2014. Bag of contour fragments for robust shape classification. Pattern Recog. 47, 6 (2014), 2116--2125.
[38]
Ewald Wieser, Markus Seidl, and Matthias Zeppelzauer. 2017. A study on skeletonization of complex petroglyph shapes. Mult. Tools Appl. 76, 6 (Mar 2017), 8285--8303.
[39]
T. Y. Zhang and C. Y. Suen. 1984. A fast parallel algorithm for thinning digital patterns. Commun. ACM 27, 3 (March 1984), 236--239.
[40]
Qiang Zhu, Xiaoyue Wang, Eamonn Keogh, and Sang-Hee Lee. 2011. An efficient and effective similarity measure to enable data mining of petroglyphs. Data Mining Knowl. Discov. 23, 1 (Jul 2011), 91--127.

Cited By

View all
  • (2022)Deep Segmentation of Corrupted GlyphsJournal on Computing and Cultural Heritage 10.1145/346562915:1(1-24)Online publication date: 22-Jan-2022
  • (2022)Encoding hieroglyph segments to represent hieroglyphs following the bag of visual word model for retrievalExpert Systems with Applications10.1016/j.eswa.2022.116983201(116983)Online publication date: Sep-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal on Computing and Cultural Heritage
Journal on Computing and Cultural Heritage   Volume 12, Issue 2
June 2019
153 pages
ISSN:1556-4673
EISSN:1556-4711
DOI:10.1145/3328727
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 April 2019
Accepted: 01 October 2018
Revised: 01 October 2018
Received: 01 February 2018
Published in JOCCH Volume 12, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hieroglyphs
  2. content-based image retrieval
  3. hieroglyph representation
  4. local shape descriptor

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • National Council of Science and Technology of México (CONACyT)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Deep Segmentation of Corrupted GlyphsJournal on Computing and Cultural Heritage 10.1145/346562915:1(1-24)Online publication date: 22-Jan-2022
  • (2022)Encoding hieroglyph segments to represent hieroglyphs following the bag of visual word model for retrievalExpert Systems with Applications10.1016/j.eswa.2022.116983201(116983)Online publication date: Sep-2022

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media