Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3289600.3290986acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

Joint Optimization of Cascade Ranking Models

Published: 30 January 2019 Publication History

Abstract

Reducing excessive costs in feature acquisition and model evaluation has been a long-standing challenge in learning-to-rank systems. A cascaded ranking architecture turns ranking into a pipeline of multiple stages, and has been shown to be a powerful approach to balancing efficiency and effectiveness trade-offs in large-scale search systems. However, learning a cascade model is often complex, and usually performed stagewise independently across the entire ranking pipeline. In this work we show that learning a cascade ranking model in this manner is often suboptimal in terms of both effectiveness and efficiency. We present a new general framework for learning an end-to-end cascade of rankers using backpropagation. We show that stagewise objectives can be chained together and optimized jointly to achieve significantly better trade-offs globally. This novel approach is generalizable to not only differentiable models but also state-of-the-art tree-based algorithms such as LambdaMART and cost-efficient gradient boosted trees, and it opens up new opportunities for exploring additional efficiency-effectiveness trade-offs in large-scale search systems.

References

[1]
N. Asadi and J. Lin. 2013a. Document Vector Representations for Feature Extraction in Multi-Stage Document Ranking. Inf. Retr., Vol. 16, 6 (2013), 747--768.
[2]
N. Asadi and J. Lin. 2013b. Effectiveness/Efficiency Tradeoffs for Candidate Generation in Multi-Stage Retrieval Architectures. In Proc. SIGIR. 997--1000.
[3]
A. Broder, E. Gabrilovich, V. Josifovski, G. Mavromatis, D. Metzler, and J. Wang. 2010. Exploiting Site-level Information to Improve Web Search. In Proc. CIKM . 1393--1396.
[4]
C. Burges. 2010. From RankNet to LambdaRank to LambdaMart: An overview. Learning, Vol. 11, 23--581 (2010), 81.
[5]
B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. 2010. Early Exit Optimizations for Additive Machine Learned Ranking Systems. In Proc. WSDM . 411--420.
[6]
G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and N. Tonellotto. 2016. Quality versus efficiency in document scoring with learning-to-rank models. Inf. Proc. & Man., Vol. 52, 6 (2016), 1161--1177.
[7]
O. Chapelle and Y. Chang. 2011. Yahoo! Learning to Rank Challenge Overview. J. Mach. Learn. Res., Vol. 14 (2011), 1--24.
[8]
R-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. 2017. Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval. In Proc. SIGIR . 445--454.
[9]
T. Chen and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proc. KDD. 785--794.
[10]
J. S. Culpepper, C. L. A. Clarke, and J. Lin. 2016. Dynamic Cutoff Prediction in Multi-Stage Retrieval Systems. In Proc. ADCS. 17--24.
[11]
D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. 2016. Fast ranking with additive ensembles of oblivious and non-oblivious regression trees. ACM Trans. Information Systems, Vol. 35, 2 (2016), 15.1--15.31.
[12]
B. T. Dinccer, C. Macdonald, and I. Ounis. 2016. Risk-sensitive evaluation and learning to rank using multiple baselines. In Proc. SIGIR . 483--492.
[13]
B. T. Dincc er, C. Macdonald, and I. Ounis. 2014. Hypothesis testing for the risk-sensitive evaluation of retrieval systems. In Proc. SIGIR. 23--32.
[14]
M. M. Dundar and J. Bi. 2007. Joint Optimization of Cascaded Classifiers for Computer Aided Detection. In IEEE Conf. on Comp. Vis. and Pat. Recog. 1--8.
[15]
J. Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics (2001), 1189--1232.
[16]
X. Jin, T. Yang, and X. Tang. 2016. A Comparison of Cache Blocking Methods for Fast Execution of Ensemble-based Score Computation. In Proc. SIGIR. 629--638.
[17]
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T-Y. Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proc. NeurIPS . 3149--3157.
[18]
R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. 2013. Online controlled experiments at large scale. In Proc. KDD. 1168--1176.
[19]
Y. LeCun, L. Bottou, G. B. Orr, and K-R. Müller. 1998. Efficient backprop. In Neural networks: Tricks of the trade . Springer, 9--50.
[20]
S. Liu, F. Xiao, W. Ou, and L. Si. 2017. Cascade Ranking for Operational E-commerce Search. In Proc. KDD. 1557--1565.
[21]
T.-Y. Liu. 2009. Learning to Rank for Information Retrieval. Foundations and Trends in Information Retrieval, Vol. 3, 3 (2009), 225--331.
[22]
C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. 2016a. Post-learning optimization of tree ensembles for efficient ranking. In Proc. SIGIR . 949--952.
[23]
C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. 2015. QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees. In Proc. SIGIR. 73--82.
[24]
C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. 2016b. Exploiting CPU SIMD extensions to speed-up document scoring with tree ensembles. In Proc. SIGIR. 833--836.
[25]
C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. 2017. X-DART: Blending Dropout and Pruning for Efficient Learning to Rank. In Proc. SIGIR . 1077--1080.
[26]
C. Lucchese, F. M. Nardini, R. Perego, S. Orlando, and S. Trani. 2018. Selective Gradient Boosting for Effective Learning to Rank. In Proc. SIGIR . 155--164.
[27]
C. Macdonald, R. L. T. Santos, and I. Ounis. 2013a. The whens and hows of learning to rank for web search. Inf. Retr., Vol. 16, 5 (2013), 584--628.
[28]
C. Macdonald, R. L. T. Santos, I. Ounis, and B. He. 2013b. About learning models with multiple query-dependent features. ACM Trans. Information Systems, Vol. 31, 3 (2013), 11:1--11:39.
[29]
J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin. 2018. Query Driven Algorithm Selection in Early Stage Retrieval. In Proc. WSDM . 396--404.
[30]
I. Matveeva, C. Burges, T. Burkard, A. Laucius, and L. Wong. 2006. High Accuracy Retrieval with Multiple Nested Ranker. In Proc. SIGIR . 437--444.
[31]
H. R. Mohammad, K. Xu, J. Callan, and J. S. Culpepper. 2018. Dynamic Shard Cutoff Prediction for Selective Search. In Proc. SIGIR. 85--94.
[32]
V. Nair and G. E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proc. ICML . 807--814.
[33]
S. Peter, F. Diego, F. A. Hamprecht, and B. Nadler. 2017. Cost Efficient Gradient Boosting. In Proc. NeurIPS . 1550--1560.
[34]
C. Pölitz and R. Schenkel. 2011. Learning to rank under tight budget constraints. In Proc. SIGIR. 1173--1174.
[35]
T. Qin and T-Y. Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR (2013). http://arxiv.org/abs/1306.2597
[36]
K. V. Rashmi and R. Gilad-Bachrach. 2015. DART: Dropouts meet Multiple Additive Regression Trees. J. Mach. Learn. Res., Vol. 38 (2015), 489--497.
[37]
V. C. Raykar, B. Krishnapuram, and S. Yu. 2010. Designing efficient cascaded classifiers: tradeoff between accuracy and cost. In Proc. KDD . 853--860.
[38]
V. N. Vapnik. 1995. The Nature of Statistical Learning Theory .Springer-Verlag New York, Inc., New York, NY, USA.
[39]
L. Wang, P. N. Bennett, and K. Collins-Thompson. 2012. Robust ranking models via risk-sensitive optimization. In Proc. SIGIR . 761--770.
[40]
L. Wang, J. Lin, and D. Metzler. 2010. Learning to efficiently rank. In Proc. SIGIR. 138--145.
[41]
L. Wang, J. Lin, and D. Metzler. 2011. A Cascade Ranking Model for Efficient Ranked Retrieval. In Proc. SIGIR . 105--114.
[42]
Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. 2013. Cost-Sensitive Tree of Classifiers. In Proc. ICML. 133--141.
[43]
Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. 2014. Classifier Cascades and Trees for Minimizing Feature Evaluation Cost. J. Mach. Learn. Res., Vol. 15 (2014), 2113--2144.
[44]
Z. Xu, K. Q. Weinberger, and O. Chapelle. 2012. The Greedy Miser: Learning Under Test-time Budgets. In Proc. ICML . 1175--1182.

Cited By

View all
  • (2024)Enhancing Pre-Ranking Performance: Tackling Intermediary Challenges in Multi-Stage Cascading Recommendation SystemsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671580(5950-5958)Online publication date: 25-Aug-2024
  • (2024)Residual Multi-Task Learner for Applied RankingProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671523(4974-4985)Online publication date: 25-Aug-2024
  • (2024)Full Stage Learning to Rank: A Unified Framework for Multi-Stage SystemsProceedings of the ACM Web Conference 202410.1145/3589334.3645523(3621-3631)Online publication date: 13-May-2024
  • Show More Cited By

Index Terms

  1. Joint Optimization of Cascade Ranking Models

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WSDM '19: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining
    January 2019
    874 pages
    ISBN:9781450359405
    DOI:10.1145/3289600
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 January 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. cascade ranking
    2. learning to rank
    3. multi-stage retrieval

    Qualifiers

    • Research-article

    Conference

    WSDM '19

    Acceptance Rates

    WSDM '19 Paper Acceptance Rate 84 of 511 submissions, 16%;
    Overall Acceptance Rate 498 of 2,863 submissions, 17%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)33
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 11 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Enhancing Pre-Ranking Performance: Tackling Intermediary Challenges in Multi-Stage Cascading Recommendation SystemsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671580(5950-5958)Online publication date: 25-Aug-2024
    • (2024)Residual Multi-Task Learner for Applied RankingProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671523(4974-4985)Online publication date: 25-Aug-2024
    • (2024)Full Stage Learning to Rank: A Unified Framework for Multi-Stage SystemsProceedings of the ACM Web Conference 202410.1145/3589334.3645523(3621-3631)Online publication date: 13-May-2024
    • (2024)Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank?Advances in Information Retrieval10.1007/978-3-031-56066-8_29(384-402)Online publication date: 24-Mar-2024
    • (2023)Cooperative Retriever and Ranker in Deep RecommendersProceedings of the ACM Web Conference 202310.1145/3543507.3583422(1150-1161)Online publication date: 30-Apr-2023
    • (2023)RecStudio: Towards a Highly-Modularized Recommender SystemProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591894(2890-2900)Online publication date: 19-Jul-2023
    • (2023)Early Exit Strategies for Learning-to-Rank CascadesIEEE Access10.1109/ACCESS.2023.333108811(126691-126704)Online publication date: 2023
    • (2023)Learning Query-Space Document Representations for High-Recall RetrievalAdvances in Information Retrieval10.1007/978-3-031-28238-6_51(599-607)Online publication date: 2-Apr-2023
    • (2022)Stochastic Retrieval-Conditioned RerankingProceedings of the 2022 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3539813.3545141(81-91)Online publication date: 23-Aug-2022
    • (2022)Early Stage Sparse Retrieval with Entity LinkingProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557588(4464-4469)Online publication date: 17-Oct-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media