Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3295500.3356197acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Open access

A massively parallel infrastructure for adaptive multiscale simulations: modeling RAS initiation pathway for cancer

Published: 17 November 2019 Publication History

Abstract

Computational models can define the functional dynamics of complex systems in exceptional detail. However, many modeling studies face seemingly incommensurate requirements: to gain meaningful insights into some phenomena requires models with high resolution (microscopic) detail that must nevertheless evolve over large (macroscopic) length- and time-scales. Multiscale modeling has become increasingly important to bridge this gap. Executing complex multiscale models on current petascale computers with high levels of parallelism and heterogeneous architectures is challenging. Many distinct types of resources need to be simultaneously managed, such as GPUs and CPUs, memory size and latencies, communication bottlenecks, and filesystem bandwidth. In addition, robustness to failure of compute nodes, network, and filesystems is critical.
We introduce a first-of-its-kind, massively parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI), which couples a macro scale model spanning micrometer length- and millisecond time-scales with a micro scale model employing high-fidelity molecular dynamics (MD) simulations. MuMMI is a cohesive and transferable infrastructure designed for scalability and efficient execution on heterogeneous resources. A central workflow manager simultaneously allocates GPUs and CPUs while robustly handling failures in compute nodes, communication networks, and filesystems. A hierarchical scheduler controls GPU-accelerated MD simulations and in situ analysis.
We present the various MuMMI components, including the macro model, GPU-accelerated MD, in situ analysis of MD data, machine learning selection module, a highly scalable hierarchical scheduler, and detail the central workflow manager that ties these modules together. In addition, we present performance data from our runs on Sierra, in which we validated MuMMI by investigating an experimentally intractable biological system: the dynamic interaction between RAS proteins and a plasma membrane. We used up to 4000 nodes of the Sierra supercomputer, concurrently utilizing over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000 different tasks. This multiscale simulation includes about 120,000 MD simulations aggregating over 200 milliseconds, which is orders of magnitude greater than comparable studies.

References

[1]
Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk Hess, and Erik Lindahl. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1--2 (Sept. 2015), 19--25.
[2]
Brian M. Adams, Lara E. Bauman, William J. Bohnhoff, Keith R. Dalbey, Mohamed S. Ebeida, John P. Eddy, Michael S. Eldred, Patricia D. Hough, Kenneth T. Hu, John D. Jakeman, J. Adam Stephens, Laura P. Swiler, Dena M. Vigil, and Timothy M. Wildey. 2009. Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual. Sandia National Laboratory.
[3]
Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Herbein, Joseph Koning, Tapasya Patki, Thomas R. W. Scogland, Becky Springmeyer, and Michela Taufer. 2018. Flux: Overcoming Scheduling Challenges for Exascale Workflows. In 2018 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). IEEE, Dallas, TX, USA, 10--19.
[4]
Michael P. Allen and Dominic J. Tildesley. 1989. Computer Simulation of Liquids. Clarendon Press, New York, NY, USA.
[5]
Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and Steve Mock. 2004. Kepler: an extensible system for design and execution of scientific workflows. In Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004. IEEE, 423--424.
[6]
Nojood A. Altwaijry, Michael Baron, David W. Wright, Peter V. Coveney, and Andrea Townsend-Nicholson. 2017. An Ensemble-Based Protocol for the Computational Prediction of Helix-Helix Interactions in G Protein-Coupled Receptors using Coarse-Grained Molecular Dynamics. Journal of Chemical Theory and Computation 13, 5 (2017), 2254--2270.
[7]
Hans C. Andersen. 1983. Rattle: A "velocity" version of the shake algorithm for molecular dynamics calculations. The Journal of Computational Physics 52, 1 (1983), 24--34.
[8]
Gary S. Ayton, Will G. Noid, and Gregory A. Voth. 2007. Multiscale modeling of biomolecular systems: in serial and in parallel. Current Opinion in Structural Biology 17, 2 (2007), 192--198.
[9]
Gary S. Ayton and Gregory A. Voth. 2010. Multiscale simulation of protein mediated membrane remodeling. Seminars in Cell & Developmental Biology 21, 4 (June 2010), 357--362.
[10]
Herman J.C. Berendsen, J.P.M. Postma, Wilfred F. van Gunsteren, A. DiNola, and Jan R. Haak. 1984. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics 81, 8 (1984), 3684--3690. arXiv:https://doi.org/10.1063/1.448118
[11]
James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for scientific computing conference (SciPy), Vol. 4. Austin, TX.
[12]
Tamara C. Bidone, Anirban Polley, Jaehyeok Jin, Tristan Driscoll, Daniel V. Iwamoto, David A. Calderwood, Martin A. Schwartz, and Gregory A. Voth. 2019. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophysical Journal 116, 6 (Feb. 2019), 1000--1010.
[13]
Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl, Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann. 2016. preCICE - A fully parallel library for multi-physics surface coupling. Computers & Fluids 141 (2016), 250--258.
[14]
Timothy S. Carpenter, Peter J. Bond, Syma Khalid, and Mark S.P. Sansom. 2008. Self-assembly of a simple membrane protein: coarse-grained molecular dynamics simulations of the influenza M2 channel. Biophysical Journal 95, 8 (2008), 3790--3801.
[15]
Timothy S. Carpenter, Cesar A. López, Chris Neale, Cameron Montour, Helgi I. Ingólfsson, Francesco Di Natale, Felice C. Lightstone, and Sandrasegaram Gnanakaran. 2018. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. Journal of Chemical Theory and Computation 14, 11 (2018), 6050--6062.
[16]
Matthieu Chavent, Anna L. Duncan, Patrice Rassam, Oliver Birkholz, Jean Hélie, Tyler Reddy, Dmitry Beliaev, Ben Hambly, Jacob Piehler, Colin Kleanthous, and Mark S.P. Sansom. 2018. How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins. Nature Communications 9, 1 (Dec. 2018).
[17]
François Chollet et al. 2015. Keras. https://github.com/fchollet/keras.
[18]
Anthony Craig, Sophie Valcke, and Laure Coquart. 2017. Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geoscientific Model Development 10, 9 (2017), 3297--3308.
[19]
Tamara L. Dahlgren, David Domyancic, Scott Brandon, Todd Gamblin, John Gyllenhaal, Rao Nimmakayala, and Richard Klein. 2015. Poster: Scaling uncertainty quantification studies to millions of jobs. In Proceedings of the 27th ACM/IEEE International Conference for High Performance Computing and Communications Conference (SC).
[20]
Djurre H. de Jong, Svetlana Baoukina, Helgi I. Ingólfsson, and Siewert J. Marrink. 2016. Martini straight: Boosting performance using a shorter cutoff and GPUs. Computer Physics Communications 199 (Feb. 2016), 1--7.
[21]
Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J. Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny, and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science Automation. Future Generation Computer Systems 46 (2015), 17--35.
[22]
Francesco Di Natale. 2017. Maestro Workflow Conductor. https://github.com/LLNL/maestrowf.
[23]
Carl Doersch. 2016. Tutorial on Variational Autoencoders. arXiv:1606.05908 [cs, stat] (June 2016). http://arxiv.org/abs/1606.05908
[24]
Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel, and Laurent Gicquel. 2015. Analysis of high performance conjugate heat transfer with the OpenPALM coupler. Computational Science & Discovery 8, 1 (July 2015), 015003.
[25]
Anna L. Duncan, Tyler Reddy, Heidi Koldsø, Jean Hélie, Philip W. Fowler, Matthieu Chavent, and Mark S.P. Sansom. 2017. Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Scientific Reports 7, 1 (Dec. 2017).
[26]
Giray Enkavi, Matti Javanainen, Waldemar Kulig, Tomasz Róg, and Ilpo Vattulainen. 2019. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chemical Reviews 119, 9 (March 2019), 5607--5774.
[27]
Ernest J. Friedman-Hill, Edward L. Hoffman, Marcus J. Gibson, Robert L. Clay, and Kevin H. Olson. 2015. Incorporating Workflow for V&V/UQ in the Sandia Analysis Workbench. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
[28]
Wolfgang Frings, Dong H. Ahn, Matthew LeGendre, Todd Gamblin, Bronis R. de Supinski, and Felix Wolf. 2013. Massively Parallel Loading. In Proceedings of the 27th International ACM Conference on International Conference on Supercomputing (ICS '13). ACM, New York, NY, USA, 389--398.
[29]
Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack Package Manager: Bringing Order to HPC Software Chaos. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '15). ACM, New York, NY, USA, Article 40, 12 pages.
[30]
James N. Glosli, David F. Richards, Kyle J. Caspersen, Robert E. Rudd, John A. Gunnels, and Frederick H. Streitz. 2007. Extending Stability Beyond CPU Millennium: A Micron-scale Atomistic Simulation of Kelvin-Helmholtz Instability. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07). ACM, New York, NY, USA, Article 58, 11 pages.
[31]
Richard Gowers, Max Linke, Jonathan Barnoud, Tyler Reddy, Manuel Melo, Sean Seyler, Jan Domański, David Dotson, Sébastien Buchoux, Ian Kenney, and Oliver Beckstein. 2016. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Austin, Texas, 98--105.
[32]
John M.A. Grime, James F. Dama, Barbie K. Ganser-Pornillos, Cora L. Woodward, Grant J. Jensen, Mark Yeager, and Gregory A. Voth. 2016. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nature Communications 7 (2016), 11568.
[33]
IBM. 2019. IBM Job Step Manager (JSM). IBM Corporation. https://www.ibm.com/support/knowledgecenter/en/SSWRJV_10.1.0/jsm/10.3/base/jsm_kickoff.html
[34]
Tsuyoshi Ichimura, Kohei Fujita, Takuma Yamaguchi, Akira Naruse, Jack C. Wells, Thomas C. Schulthess, Tjerk P. Straatsma, Christopher J. Zimmer, Maxime Martinasso, Kengo Nakajima, Muneo Hori, and Lalith Maddegedara. 2018. A Fast Scalable Implicit Solver for Nonlinear Time-evolution Earthquake City Problem on Low-ordered Unstructured Finite Elements with Artificial Intelligence and Transprecision Computing. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC '18). IEEE Press, Piscataway, NJ, USA, 627--637. http://dl.acm.org/citation.cfm?id=3291656.3291722 event-place: Dallas, Texas.
[35]
IEEE 1003.1 2013. Standard for Information Technology---Portable Operating System Interface (POSIX(R)) Base Specifications (2016 ed.). Standard. Institute of Electrical and Electronics Engineers, New Jersey, USA. Issue 7.
[36]
Helgi I. Ingólfsson, Clément Arnarez, Xavier Periole, and Siewert J. Marrink. 2016. Computational 'microscopy' of cellular membranes. Journal of Cell Science 129, 2 (Jan. 2016), 257--268.
[37]
Helgi I. Ingólfsson, Timothy S. Carpenter, Harsh Bhatia, Peer-Timo Bremer, Siewert J. Marrink, and Felice C. Lightstone. 2017. Computational Lipidomics of the Neuronal Plasma Membrane. Biophysical Journal 113, 10 (Nov. 2017), 2271--2280.
[38]
Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael Kocher, Miriam Brafman, Guido Petretto, Gian-Marco Rignanese, Geoffroy Hautier, Daniel Gunter, and Kristin A. Persson. 2015. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurrency and Computation: Practice and Experience 27, 17 (2015), 5037--5059. &CPE-14-0307.R2.
[39]
Morris A. Jette, Andy B. Yoo, and Mark Grondona. 2002. SLURM: Simple Linux Utility for Resource Management. In In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003. Springer-Verlag, 44--60.
[40]
Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with GPUs. IEEE Transactions on Big Data (2019).
[41]
Shina C.L. Kamerlin and Arieh Warshel. 2011. Multiscale modeling of biological functions. Physical Chemistry Chemical Physics 13, 22 (2011), 10401--10411.
[42]
Kai J. Kohlhoff, Diwakar Shukla, Morgan Lawrenz, Gregory R. Bowman, David E. Konerding, Dan Belov, Russ B. Altman, and Vijay S. Pande. 2014. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chemistry 6, 1 (2014), 15--21.
[43]
Redis Labs. 2018. Redis. https://redis.io.
[44]
Paul Langevin. 1908. Sur la théorie du mouvement brownien. Compt. Rendus 146 (1908), 530--533.
[45]
Lawrence Livermore National Laboratory. 2019. Sierra. Retrieved August 22, 2019 from https://hpc.llnl.gov/hardware/platforms/sierra
[46]
Cesar A. López, Timothy Travers, Klaas M. Pos, Helen I. Zgurskaya, and S. Gnanakaran. 2017. Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface. Scientific Reports 7, 1 (Dec. 2017).
[47]
Umberto M.B. Marconi and Pedro Tarazona. 1999. Dynamic density functional theory of fluids. The Journal of chemical physics 110, 16 (1999), 8032--8044.
[48]
Siewert J. Marrink, H. Jelger Risselada, Serge Yefimov, D. Peter Tieleman, and Alex H. de Vries. 2007. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. The Journal of Physical Chemistry B 111, 27 (July 2007), 7812--7824.
[49]
Donald A. McQuarrie. 2000. Statistical Mechanics. University Science Books. https://books.google.com/books?id=itcpPnDnJM0C
[50]
Manuel N. Melo, Clément Arnarez, Hendrik Sikkema, Neeraj Kumar, Martin Walko, Herman J. C. Berendsen, Armagan Kocer, Siewert J. Marrink, and Helgi I. Ingólfsson. 2017. High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating. Journal of the American Chemical Society 139, 7 (Feb. 2017), 2664--2671.
[51]
Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. 2011. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. The Journal of Computational Chemistry 32, 10 (July 2011), 2319--2327.
[52]
Akshay Mittal, Xiao Chen, Charles Tong, and Gianluca Iaccarino. 2014. A Flexible Uncertainty Quantification Framework for General Multi-Physics Systems. arXiv e-prints (Oct. 2014), 1410--5316.
[53]
Leonard S. Ornstein and Frits Zernike. 1914. Accidental Deviations of Density and Opalescence at the Critical Point of a Single Substance. Proceeding of Akademic Science 17 (1914), 793--806.
[54]
Alexander J. Pak, John M. A. Grime, Prabuddha Sengupta, Antony K. Chen, Aleksander E.P. Durumeric, Anand Srivastava, Mark Yeager, John A.G. Briggs, Jennifer Lippincott-Schwartz, and Gregory A. Voth. 2017. Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proceddings of the National Academy of Sciences 114, 47 (2017), E10056--E10065.
[55]
Juan R. Perilla, Boon Chong Goh, C. Keith Cassidy, Bo Liu, Rafael C. Bernardi, Till Rudack, Hang Yu, Zhe Wu, and Klaus Schulten. 2015. Molecular dynamics simulations of large macromolecular complexes. Current Opinion in Structural Biology 31 (2015), 64--74.
[56]
Jayson L. Peterson, Kelli D. Humbird, John E. Field, Scott T. Brandon, Steve H. Langer, Ryan C. Nora, Brian K. Spears, and Paul T. Springer. 2017. Zonal Flow Generation in Inertial Confinement Fusion Implosions. Physics of Plasmas 24, 3 (2017), 032702. arXiv:https://doi.org/10.1063/1.4977912
[57]
Tyler Reddy and Mark S.P. Sansom. 2016. The Role of the Membrane in the Structure and Biophysical Robustness of the Dengue Virion Envelope. Structure 24, 3 (March 2016), 375--382.
[58]
Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin M. Müller, Kurt Kremer, and Markus Deserno. 2007. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 7143 (2007), 461.
[59]
Lars Schneidenbach, Claudia Misale, Bruce D'Amora, and Carlos Costa. 2019. IBM Data Broker. https://github.com/IBM/data-broker.
[60]
Hans M. Senn and Walter Thiel. 2009. QM/MM methods for biomolecular systems. Angewandte Chemie International Edition 48, 7 (2009), 1198--1229.
[61]
David E. Shaw, Ron O. Dror, John K. Salmon, J.P. Grossman, Kenneth M. Mackenzie, Joseph A. Bank, Cliff Young, Martin M. Deneroff, Brannon Batson, Kevin J. Bowers, Edmond Chow, Michael P. Eastwood, Douglas J. Ierardi, John L. Klepeis, Jeffrey S. Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul Maragakis, Mark A. Moraes, Stefano Piana, Yibing Shan, and Brian Towles. 2009. Millisecond-scale Molecular Dynamics Simulations on Anton. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09). New York, NY, USA, 1--11.
[62]
Dhirendra K. Simanshu, Dwight V. Nissley, and Frank McCormick. 2017. RAS Proteins and Their Regulators in Human Disease. Cell 170, 1 (June 2017), 17--33.
[63]
Mijo Simunovic, Anand Srivastava, and Gregory A. Voth. 2013. Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proceedings of the National Academy of Sciences 110, 51 (Dec. 2013), 20396--20401.
[64]
James Smith. 2017. IBM Spectrum LSF. IBM Corporation. https://www.ibm.com/support/knowledgecenter/en/SSWRJV_10.1.0/lsf_welcome/lsf_welcome.html
[65]
Phillip J. Stansfeld and Mark S.P. Sansom. 2011. From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. Journal of Chemical Theory and Computation 7, 4 (2011), 1157--1166.
[66]
Frederick H. Streitz, James N. Glosli, and Mehul V. Patel. 2006. Beyond finite-size scaling in solidification simulations. Physical Review Letters 96, 22 (2006), 225701.
[67]
Frederick H. Streitz, James N. Glosli, Mehul V. Patel, Bor Chan, Robert K. Yates, Bronis R. de Supinski, James Sexton, and John A. Gunnels. 2005. 100+ TFlop Solidification Simulations on BlueGene/L. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC '05). ACM, New York, NY, USA.
[68]
William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson. 1982. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics 76, 1 (1982), 637--649. arXiv:https://doi.org/10.1063/1.442716
[69]
The HDF Group. 1997--2019. Hierarchical Data Format, version 5. https://www.hdfgroup.org/HDF5/.
[70]
Michael R. Tonks, Derek Gaston, Paul C. Millett, David Andrs, and Paul Talbot. 2012. An object-oriented finite element framework for multiphysics phase field simulations. Computational Materials Science 51, 1 (2012), 20--29.
[71]
TOP500. 2019. June 2019 | TOP500 Supercomputer Sites. https://www.top500.org/lists/2019/06/
[72]
Timothy Travers, Cesar A. López, Que N. Van, Chris Neale, Marco Tonelli, Andrew G. Stephen, and Sandrasegaram Gnanakaran. 2018. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Scientific Reports 8, 1 (May 2018), 8461.
[73]
Vincent A. Voelz, Marcus Jäger, Shuhuai Yao, Yujie Chen, Li Zhu, Steven A. Waldauer, Gregory R. Bowman, Mark Friedrichs, Olgica Bakajin, Lisa J. Lapidus, Shimon Weiss, and Vijay S. Pande. 2012. Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment. Journal of the American Chemical Society 134, 30 (2012), 12565--12577.
[74]
Martin Vögele, Jürgen Köfinger, and Gerhard Hummer. 2018. Hydrodynamics of Diffusion in Lipid Membrane Simulations. Physical Review Letters 120, 26 (June 2018), 268104.
[75]
Gregory A. Voth. 2017. A Multiscale Description of Biomolecular Active Matter: The Chemistry Underlying Many Life Processes. Accounts of Chemical Research 50, 3 (March 2017), 594--598.
[76]
Tsjerk A. Wassenaar, Helgi I. Ingólfsson, Rainer A. Böckmann, D. Peter Tieleman, and Siewert J. Marrink. 2015. Computational Lipidomics with insane : A Versatile Tool for Generating Custom Membranes for Molecular Simulations. Journal of Chemical Theory and Computation 11, 5 (May 2015), 2144--2155.
[77]
Tsjerk A. Wassenaar, Kristyna Pluhackova, Anastassiia Moussatova, Durba Sengupta, Siewert J. Marrink, D. Peter Tieleman, and Rainer A. Böckmann. 2015. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. Journal of Chemical Theory and Computation 11, 5 (May 2015), 2278--2291.
[78]
Andrew M. Waters and Channing J. Der. 2018. KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harbor Perspectives in Medicine 8, 9 (Sept. 2018), a031435.
[79]
Paul C. Whitford, Scott C. Blanchard, Jamie H. D. Cate, and Karissa Y. Sanbonmatsu. 2013. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome. PLOS Computational Biology 9, 3 (March 2013), 1--10.
[80]
Isseki Yu, Takaharu Mori, Tadashi Ando, Ryuhei Harada, Jaewoon Jung, Yuji Sugita, and Michael Feig. 2016. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5 (Nov. 2016), e19274.

Cited By

View all
  • (2024)ExaWorks software development kit: a robust and scalable collection of interoperable workflows technologiesFrontiers in High Performance Computing10.3389/fhpcp.2024.13946152Online publication date: 29-Oct-2024
  • (2024)Formal Definitions and Performance Comparison of Consistency Models for Parallel File SystemsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2024.339105835:6(1092-1106)Online publication date: Jun-2024
  • (2024)Enabling Workload-Driven Elasticity in MPI-based Ensembles2024 IEEE International Conference on Cluster Computing (CLUSTER)10.1109/CLUSTER59578.2024.00029(250-262)Online publication date: 24-Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
November 2019
1921 pages
ISBN:9781450362290
DOI:10.1145/3295500
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

  • IEEE CS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 November 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. adaptive simulations
  2. cancer research
  3. heterogenous architecture
  4. machine learning
  5. massively parallel
  6. multiscale simulations

Qualifiers

  • Research-article

Conference

SC '19
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)465
  • Downloads (Last 6 weeks)43
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)ExaWorks software development kit: a robust and scalable collection of interoperable workflows technologiesFrontiers in High Performance Computing10.3389/fhpcp.2024.13946152Online publication date: 29-Oct-2024
  • (2024)Formal Definitions and Performance Comparison of Consistency Models for Parallel File SystemsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2024.339105835:6(1092-1106)Online publication date: Jun-2024
  • (2024)Enabling Workload-Driven Elasticity in MPI-based Ensembles2024 IEEE International Conference on Cluster Computing (CLUSTER)10.1109/CLUSTER59578.2024.00029(250-262)Online publication date: 24-Sep-2024
  • (2024)Membrane lipids drive formation of KRAS4b-RAF1 RBDCRD nanoclusters on the membraneCommunications Biology10.1038/s42003-024-05916-07:1Online publication date: 28-Feb-2024
  • (2024)Generating Protein Structures for Pathway Discovery Using Deep LearningJournal of Chemical Theory and Computation10.1021/acs.jctc.4c0081620:20(8795-8806)Online publication date: 10-Oct-2024
  • (2024)Development of 6-way CFD-DEM-FEM momentum coupling interface using partitioned coupling approachResults in Engineering10.1016/j.rineng.2024.102214(102214)Online publication date: May-2024
  • (2023)Micro Manager: a Python package for adaptive and flexible two-scale couplingJournal of Open Source Software10.21105/joss.058428:91(5842)Online publication date: Nov-2023
  • (2023)PSI/J: A Portable Interface for Submitting, Monitoring, and Managing Jobs2023 IEEE 19th International Conference on e-Science (e-Science)10.1109/e-Science58273.2023.10254912(1-10)Online publication date: 9-Oct-2023
  • (2023)Driving Next-Generation Workflows from the Data Plane2023 IEEE 19th International Conference on e-Science (e-Science)10.1109/e-Science58273.2023.10254849(1-10)Online publication date: 9-Oct-2023
  • (2023)Scalable Comparative Visualization of Ensembles of Call GraphsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.312941429:3(1691-1704)Online publication date: 1-Mar-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media