Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3295500.3356203acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Public Access

Scalable simulation of realistic volume fraction red blood cell flows through vascular networks

Published: 17 November 2019 Publication History

Abstract

High-resolution blood flow simulations have potential for developing better understanding biophysical phenomena at the microscale, such as vasodilation, vasoconstriction and overall vascular resistance. To this end, we present a scalable platform for the simulation of red blood cell (RBC) flows through complex capillaries by modeling the physical system as a viscous fluid with immersed deformable particles. We describe a parallel boundary integral equation solver for general elliptic partial differential equations, which we apply to Stokes flow through blood vessels. We also detail a parallel collision avoiding algorithm to ensure RBCs and the blood vessel remain contact-free. We have scaled our code on Stampede2 at the Texas Advanced Computing Center up to 34,816 cores. Our largest simulation enforces a contact-free state between four billion surface elements and solves for three billion degrees of freedom on one million RBCs and a blood vessel composed from two million patches.

References

[1]
N. Al Quddus, W. A. Moussa, and S. Bhattacharjee. "Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method". In: Journal of colloid and interface science 317.2 (2008), pp. 620--630.
[2]
S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W Gropp, D. Kaushik, et al. Petsc users manual revision 3.8. Tech. rep. Argonne National Lab.(ANL), Argonne, IL (United States), 2017.
[3]
P. Balogh and P. Bagchi. "A computational approach to modeling cellular-scale blood flow in complex geometry". In: Journal of Computational Physics 334 (2017), pp. 280--307.
[4]
P. Balogh and P. Bagchi. "Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks". In: Biophysical journal 113.12 (2017), pp. 2815--2826.
[5]
H. H. Billett. "Hemoglobin and hematocrit". In: Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Butterworths, 1990.
[6]
O. P. Bruno and S. K. Lintner. "A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space". In: Journal of Computational Physics 252 (2013), pp. 250--274.
[7]
C. Burstedde, L. C. Wilcox, and O. Ghattas. "p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees". In: SIAM Journal on Scientific Computing 33.3 (2011), pp. 1103--1133.
[8]
P. B. Canham. "The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell". In: Journal of theoretical biology 26.1 (1970), pp. 61--81.
[9]
C. G. Caro, T. Pedley, R. Schroter, and W. Seed. The mechanics of the circulation. Cambridge University Press, 2012.
[10]
P. Du, J. Zhao, W. Cao, and Y. Wang. "DCCD: Distributed N-Body Rigid Continuous Collision Detection for Large-Scale Virtual Environments". In: Arabian Journal for Science and Engineering 42.8 (2017), pp. 3141--3147.
[11]
S. Fang. "A linearization method for generalized complementarity problems". In: IEEE transactions on automatic control 29.10 (1984), pp. 930--933.
[12]
J. B. Freund. "Numerical simulation of flowing blood cells". In: Annual review of fluid mechanics 46 (2014), pp. 67--95.
[13]
J. Gounley, M. Vardhan, and A. Randles. "A Computational Framework to Assess the Influence of Changes in Vascular Geometry on Blood Flow". In: Proceedings of the Platform for Advanced Scientific Computing Conference. ACM. 2017, p. 2.
[14]
I. G. Graham and I. H. Sloan. "Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in R3". In: Numerische Mathematik 92.2 (2002), pp. 289--323.
[15]
L. Greengard and V. Rokhlin. "A fast algorithm for particle simulations". In: Journal of computational physics 73.2 (1987), pp. 325--348.
[16]
L. Grinberg, J. A. Insley, V. Morozov, M. E. Papka, G. E. Karniadakis, D. Fedosov, and K. Kumaran. "A new computational paradigm in multiscale simulations: Application to brain blood flow". In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. ACM. 2011, p. 5.
[17]
D. Harmon, D. Panozzo, O. Sorkine, and D. Zorin. "Interference-aware geometric modeling". In: ACM Transactions on Graphics 30.6 (Dec. 2011), p. 1.
[18]
W. Helfrich. "Elastic properties of lipid bilayers: theory and possible experiments". In: Zeitschrift für Naturforschung C 28.11--12 (1973), pp. 693--703.
[19]
K. Iglberger and U. Rüde. "A Parallel Rigid Body Dynamics Algorithm". In: Euro-Par 2009 Parallel Processing. Ed. by H. Sips, D. Epema, and H.-X. Lin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 760--771.
[20]
D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-e. Yoon. "HPCCD: Hybrid Parallel Continuous Collision Detection using CPUs and GPUs". In: Computer Graphics Forum (2009).
[21]
L. af Klinteberg and A.-K. Tornberg. "A fast integral equation method for solid particles in viscous flow using quadrature by expansion". In: Journal of Computational Physics 326 (2016), pp. 420--445.
[22]
A. Klöckner, A. Barnett, L. Greengard, and M. O'Neil. "Quadrature by expansion: A new method for the evaluation of layer potentials". In: Journal of Computational Physics 252 (2013), pp. 332--349.
[23]
F. Liu, T. Harada, Y. Lee, and Y. J. Kim. "Real-time Collision Culling of a Million Bodies on Graphics Processing Units". In: ACM SIGGRAPH Asia 2010 Papers. SIGGRAPH ASIA '10. Seoul, South Korea: ACM, 2010, 154:1--154:8.
[24]
L. Lu, A. Rahimian, and D. Zorin. "Contact-aware simulations of particulate Stokesian suspensions". In: Journal of Computational Physics 347C (Nov. 2017), pp. 160--182. arXiv: 1612.02057.
[25]
L. Lu, A. Rahimian, and D. Zorin. "Parallel contact-aware simulations of deformable particles in 3D Stokes flow". In: arXiv preprint arXiv:1812.04719 (2018).
[26]
D. Malhotra and G. Biros. "PVFMM: A Parallel Kernel Independent FMM for Particle and Volume Potentials". In: Communications in Computational Physics 18 (2015), pp. 808--830.
[27]
D. Malhotra and G. Biros. "Algorithm 967: A distributed-memory fast multipole method for volume potentials". In: ACM Transactions on Mathematical Software (TOMS) 43.2 (2016), p. 17.
[28]
D. Malhotra, A. Rahimian, D. Zorin, and G. Biros. "A parallel algorithm for long-timescale simulation of concentrated vesicle suspensions in three dimensions". In: (2017).
[29]
H. Mazhar, T. Heyn, and D. Negrut. "A scalable parallel method for large collision detection problems". In: 26 (June 2011), pp. 37--55.
[30]
E. Nazockdast, A. Rahimian, D. Zorin, and M. Shelley. "Fast and high-order methods for simulating fiber suspensions applied to cellular mechanics". preprint. 2015.
[31]
S. Pabst, A. Koch, and W. Strasser. "Fast and Scalable CPU/GPU Collision Detection for Rigid and Deformable Surfaces". In: Computer Graphics Forum (2010).
[32]
P. Perdikaris, L. Grinberg, and G. E. Karniadakis. "An effective fractal-tree closure model for simulating blood flow in large arterial networks". In: Annals of biomedical engineering 43.6 (2015), pp. 1432--1442.
[33]
P. Perdikaris, L. Grinberg, and G. E. Karniadakis. "Multiscale modeling and simulation of brain blood flow". In: Physics of Fluids 28.2 (2016), p. 021304.
[34]
M. Peyrounette, Y. Davit, M. Quintard, and S. Lorthois. "Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex". In: PloS one 13.1 (2018), e0189474.
[35]
H. Power and G. Miranda. "Second kind integral equation formulation of Stokes' flows past a particle of arbitrary shape". In: SIAM Journal on Applied Mathematics 47.4 (1987), p. 689.
[36]
C. Pozrikidis. Boundary integral and singularity methods for linearized viscous flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992.
[37]
A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, et al. "Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures". In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society. 2010, pp. 1--11.
[38]
A. Rahimian, S. K. Veerapaneni, D. Zorin, and G. Biros. "Boundary integral method for the flow of vesicles with viscosity contrast in three dimensions". In: Journal of Computational Physics 298 (2015), pp. 766--786.
[39]
A. Randles, E. W. Draeger, T. Oppelstrup, L. Krauss, and J. A. Gunnels. "Massively parallel models of the human circulatory system". In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. ACM. 2015, p. 1.
[40]
D. Rossinelli, Y.-H. Tang, K. Lykov, D. Alexeev, M. Bernaschi, P. Hadjidoukas, M. Bisson, W. Joubert, C. Conti, G. Karniadakis, et al. "The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution". In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. ACM. 2015, p. 2.
[41]
A. Saadat, C. J. Guido, and E. S. Shaqfeh. "Simulation of Red Blood Cell Migration in Small Arterioles: Effect of Cytoplasmic Viscosity". In: bioRxiv (2019), p. 572933.
[42]
A. Saadat, C. J. Guido, G. Iaccarino, and E. S. Shaqfeh. "Immersed-finite-element method for deformable particle suspensions in viscous and viscoelastic media". In: Physical Review E 98.6 (2018), p. 063316.
[43]
C. Sorgentone and A.-K. Tornberg. "A highly accurate boundary integral equation method for surfactant-laden drops in 3D". In: Journal of Computational Physics 360 (2018), pp. 167--191.
[44]
C. Sorgentone, A.-K. Tornberg, and P. M. Vlahovska. "A 3D boundary integral method for the electrohydrodynamics of surfactant-covered drops". In: Journal of Computational Physics (2019).
[45]
H. Sundar, D. Malhotra, and G. Biros. "HykSort: A New Variant of Hypercube Quicksort on Distributed Memory Architectures". In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing. ICS '13. Eugene, Oregon, USA: ACM, 2013, pp. 293--302.
[46]
L. N. Trefethen. Approximation theory and approximation practice. Vol. 128. Siam, 2013.
[47]
S. K. Veerapaneni, D. Gueyffier, G. Biros, and D. Zorin. "A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows". In: Journal of Computational Physics 228.19 (Apr. 2009), pp. 7233--7249.
[48]
S. K. Veerapaneni, A. Rahimian, G. Biros, and D. Zorin. "A fast algorithm for simulating vesicle flows in three dimensions". In: Journal of Computational Physics 230.14 (2011), pp. 5610--5634.
[49]
M. Wala and A. Klöckner. "A Fast Algorithm with Error Bounds for Quadrature by Expansion". In: arXiv preprint arXiv:1801.04070 (2018).
[50]
M. Wala and A. Klöckner. "Optimization of Fast Algorithms for Global Quadrature by Expansion Using Target-Specific Expansions". In: arXiv preprint arXiv:1811.01110 (2018).
[51]
W. Wang, T. G. Diacovo, J. Chen, J. B. Freund, and M. R. King. "Simulation of platelet, thrombus and erythrocyte hydrodynamic interactions in a 3D arteriole with in vivo comparison". In: PLoS One 8.10 (2013), e76949.
[52]
D. Xu, E. Kaliviotis, A. Munjiza, E. Avital, C. Ji, and J. Williams. "Large scale simulation of red blood cell aggregation in shear flows". In: Journal of Biomechanics 46.11 (2013), pp. 1810--1817.
[53]
W. Yan, H. Zhang, and M. J. Shelley. "Computing collision stress in assemblies of active spherocylinders: Applications of a fast and generic geometric method". In: The Journal of chemical physics 150.6 (2019), p. 064109.
[54]
T. Ye, L. Peng, and Y. Li. "Three-dimensional motion and deformation of a red blood cell in bifurcated microvessels". In: Journal of Applied Physics 123.6 (2018), p. 064701.
[55]
T. Ye, N. Phan-Thien, and C. T. Lim. "Particle-based simulations of red blood cells - A review". In: Journal of biomechanics 49.11 (2016), pp. 2255--2266.
[56]
T. Ye, N. Phan-Thien, C. T. Lim, L. Peng, and H. Shi. "Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows". In: Physical Review E 95.6 (2017), p. 063314.
[57]
L. Ying, G. Biros, and D. Zorin. "A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains". In: Journal of Computational Physics 219.1 (2006), pp. 247--275.
[58]
L. Ying, G. Biros, and D. Zorin. "A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains". In: Journal of Computational Physics 219.1 (2006), pp. 247--275.
[59]
H. Zhao, A. H. Isfahani, L. N. Olson, and J. B. Freund. "A spectral boundary integral method for flowing blood cells". In: Journal of Computational Physics 229.10 (May 2010), pp. 3726--3744.

Cited By

View all
  • (2024)Assessment of coupled bilayer–cytoskeleton modelling strategy for red blood cell dynamics in flowJournal of Fluid Mechanics10.1017/jfm.2023.1092979Online publication date: 22-Jan-2024
  • (2024)Accurate close interactions of Stokes spheres using lubrication-adapted image systemsJournal of Computational Physics10.1016/j.jcp.2024.113636(113636)Online publication date: Nov-2024
  • (2024)A barrier method for contact avoiding particles in Stokes flowJournal of Computational Physics10.1016/j.jcp.2023.112648497(112648)Online publication date: Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
November 2019
1921 pages
ISBN:9781450362290
DOI:10.1145/3295500
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

  • IEEE CS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 November 2019

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

SC '19
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)222
  • Downloads (Last 6 weeks)34
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Assessment of coupled bilayer–cytoskeleton modelling strategy for red blood cell dynamics in flowJournal of Fluid Mechanics10.1017/jfm.2023.1092979Online publication date: 22-Jan-2024
  • (2024)Accurate close interactions of Stokes spheres using lubrication-adapted image systemsJournal of Computational Physics10.1016/j.jcp.2024.113636(113636)Online publication date: Nov-2024
  • (2024)A barrier method for contact avoiding particles in Stokes flowJournal of Computational Physics10.1016/j.jcp.2023.112648497(112648)Online publication date: Jan-2024
  • (2024)The effect of the endothelial surface layer on cell–cell interactions in microvessel bifurcationsBiomechanics and Modeling in Mechanobiology10.1007/s10237-024-01863-123:5(1695-1721)Online publication date: 7-Jun-2024
  • (2023)Establishing metrics to quantify spatial similarity in spherical and red blood cell distributionsJournal of Computational Science10.1016/j.jocs.2023.10206071(102060)Online publication date: Jul-2023
  • (2023)A Cartesian-octree adaptive front-tracking solver for immersed biological capsules in large complex domainsJournal of Computational Physics10.1016/j.jcp.2023.112424(112424)Online publication date: Aug-2023
  • (2022)Establishing Metrics to Quantify Underlying Structure in Vascular Red Blood Cell DistributionsComputational Science – ICCS 202210.1007/978-3-031-08751-6_7(89-102)Online publication date: 15-Jun-2022
  • (2021)A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid FlowsFluids10.3390/fluids60401396:4(139)Online publication date: 2-Apr-2021
  • (2021)A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision DetectionACM Transactions on Graphics10.1145/346077540:5(1-16)Online publication date: 24-Sep-2021
  • (2021)Intersection-free rigid body dynamicsACM Transactions on Graphics10.1145/3450626.345980240:4(1-16)Online publication date: 19-Jul-2021
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media