Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3302504.3311793acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Facetal abstraction for non-linear dynamical systems based on δ-decidable SMT

Published: 16 April 2019 Publication History
  • Get Citation Alerts
  • Abstract

    Formal analysis of non-linear continuous and hybrid systems is a hot topic. A common approach builds on computing a suitable finite discrete abstraction of the continuous system. In this paper, we propose a facetal abstraction which eliminates certain drawbacks of existing abstractions. The states of our abstraction are built primarily from facets of a polytopal partitioning of the system's state space taking thus into account the flow of the continuous dynamics and leading to global over-approximation. The transition system construction is based on queries solved by a δ-decision SMT-solver. The method is evaluated on several case studies.

    References

    [1]
    Matthias Althoff. 2013. Reachability Analysis of Nonlinear Systems Using Conservative Polynomialization and Non-convex Sets. In HSCC 2006. ACM, 173--182.
    [2]
    M. Althoff and J. M. Dolan. 2014. Online Verification of Automated Road Vehicles Using Reachability Analysis. IEEE Transactions on Robotics 30, 4 (2014), 903--918.
    [3]
    R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. 2000. Discrete abstractions of hybrid systems. Proc. IEEE 88, 7 (2000), 971--984.
    [4]
    E. Asarin, T. Dang, and A. Girard. 2007. Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43 (2007), 451--476. Issue 7.
    [5]
    R.J. Bagley and Leon Glass. 1996. Counting and Classifying Attractors in High Dimensional Dynamical Systems. Journal of Theoretical Biology 183, 3 (1996), 269 -- 284.
    [6]
    Stanley Bak and Marco Caccamo. 2013. Computing Reachability for Nonlinear Systems with HyCreate. HSCC 2013 Poster Presentation.
    [7]
    Jiří Barnat, Nikola Beneš, Luboš Brim, Martin Demko, Matej Hajnal, Samuel Pastva, and David Šafránek. 2017. Detecting Attractors in Biological Models with Uncertain Parameters. In CMSB 2017 (LNBI), Jérôme Feret and Heinz Koeppl (Eds.), Vol. 10545. Springer.
    [8]
    G.Batt, C. Belta, and R. Weiss. 2007. Model checking liveness properties of genetic regulatory networks. In TACAS 2007 (LNCS), Orna Grumberg and Michael Huth (Eds.), Vol. 4424. Springer, 323--338.
    [9]
    Gregory Batt, Hidde de Jong, Michel Page, and Johannes Geiselmann. 2008. Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44 (2008), 982--989. Issue 4.
    [10]
    Calin Belta and Luc C. G. J. M. Habets. 2006. Controlling a Class of Nonlinear Systems on Rectangles. IEEE Trans. Automat. Control 51, 11 (2006), 1749--1759.
    [11]
    S. Berman, Á. Halász, and V. Kumar. 2007. MARCO: a reachability algorithm for multi-affine systems with applications to biological systems. In HSCC 2007 (LNCS), Alberto Bemporad, Giorgio Buttazzo, and Antonio Bicchi (Eds.). Springer, 76--89.
    [12]
    Sergiy Bogomolov, Mirco Giacobbe, Thomas A. Henzinger, and Hui Kong. 2017. Conic Abstractions for Hybrid Systems. In FORMATS 2017, Alessandro Abate and Gilles Geeraerts (Eds.). Springer, 116--132.
    [13]
    Rebekah Carter and Eva M. Navarro-López. 2012. Dynamically-Driven Timed Automaton Abstractions for Proving Liveness of Continuous Systems. In FORMATS 2012 (LNCS), Marcin Jurdziński and Dejan Ničković (Eds.), Vol. 7595. Springer, 59--74.
    [14]
    Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An Analyzer for Non-linear Hybrid Systems. In CAV 2013 (LNCS), Natasha Sharygina and Helmut Veith (Eds.), Vol. 8044. Springer, 258--263.
    [15]
    A. Chutinan and B. H. Krogh. 2003. Computational techniques for hybrid system verification. IEEE Trans. Automat. Control 48, 1 (2003), 64--75.
    [16]
    Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. 2014. Verifying LTL Properties of Hybrid Systems with K-Liveness. In Computer Aided Verification (LNCS), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer, 424--440.
    [17]
    Pieter Collins and Alexandre Goldsztejn. 2008. The Reach-and-Evolve Algorithm for Reachability Analysis of Nonlinear Dynamical Systems. Electronic Notes in Theoretical Computer Science 223 (2008), 87 -- 102.
    [18]
    Pieter J. Collins, Luc C.G.J.M. Habets, Jan H. van Schuppen, Ivana Černá, Jana Fabriková, and David Šafránek. 2011. Abstraction of Biochemical Reaction Systems on Polytopes. IFAC Proceedings Volumes 44, 1 (2011), 14869--14875.
    [19]
    Thao Dang, Colas Le Guernic, and Oded Maler. 2009. Computing Reachable States for Nonlinear Biological Models. In CMSB 2009, Pierpaolo Degano and Roberto Gorrieri (Eds.). Springer, 126--141.
    [20]
    Andreas Eggers, Martin Fränzle, and Christian Herde. 2008. SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems. In ATVA 2008, Sungdeok (Steve) Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan (Eds.). Springer, 171--185.
    [21]
    A. El-Guindy, D. Han, and M. Althoff. 2017. Estimating the region of attraction via forward reachable sets. In ACC 2017. IEEE, 1263--1270.
    [22]
    Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In CAV 2011, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 379--395.
    [23]
    Sicun Gao, Jeremy Avigad, and Edmund M Clarke. 2012. Delta-decidability over the reals. In LICS 2012. IEEE, 305--314.
    [24]
    Sicun Gao, Soonho Kong, and Edmund M. Clarke. 2013. dReal: An SMT Solver for Nonlinear Theories over the Reals. In CADE 2013 (LNCS), Maria Paola Bonacina (Ed.), Vol. 7898. Springer, 208--214.
    [25]
    R. Ghosh and C. Tomlin. 2004. Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-notch protein signalling. IEE Proceedings - Systems Biology 1, 1 (2004), 170--183.
    [26]
    Antoine Girard, Colas Le Guernic, and Oded Maler. 2006. Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs. In HSCC 2006 (LNCS), João P. Hespanha and Ashish Tiwari (Eds.), Vol. 3927. Springer, 257--271.
    [27]
    Radu Grosu, Grégory Batt, Flavio H. Fenton, James Glimm, Colas Le Guernic, Scott A. Smolka, and Ezio Bartocci. 2011. From Cardiac Cells to Genetic Regulatory Networks. In CAV 2011 (LNCS), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. 396--411.
    [28]
    L.C. Habets and J. H. van Schuppen. 2004. A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40, 1 (2004), 21 -- 35.
    [29]
    M. Kloetzer and C. Belta. 2010. Reachability analysis of multi-affine systems. Transactions of the Institute of Measurement and Control 32 (2010), 445--467.
    [30]
    Ker-I Ko. 1983. On the computational complexity of ordinary differential equations. Information and control 58, 1--3 (1983), 157--194.
    [31]
    Hui Kong, Ezio Bartocci, Sergiy Bogomolov, Radu Grosu, Thomas A. Henzinger, Yu Jiang, and Christian Schilling. 2016. Discrete Abstraction of Multiaffine Systems. In HSB 2016 (LNCS), Eugenio Cinquemani and Alexandre Donzé (Eds.). Springer, 128--144.
    [32]
    Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. 2015. dReach: Δ-Reachability Analysis for Hybrid Systems. In TACAS 2015 (LNCS), Christel Baier and Cesare Tinelli (Eds.), Vol. 9035. Springer, 200--205.
    [33]
    Soonho Kong, Armando Solar-Lezama, and Sicun Gao. 2018. Delta-Decision Procedures for Exists-Forall Problems over the Reals. In CAV 2018, part of FloC 2018, Oxford, UK, July 14--17, 2018, Proceedings, Part II. 219--235.
    [34]
    Jun Liu and Necmiye Ozay. 2014. Abstraction, discretization, and robustness in temporal logic control of dynamical systems. In HSCC 14, Berlin, Germany, April 15-17, 2014. 293--302.
    [35]
    Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray. 2013. Synthesis of Reactive Switching Protocols From Temporal Logic Specifications. IEEE Trans. Automat. Contr. 58, 7 (2013), 1771--1785.
    [36]
    O. Maler and G. Batt. 2008. Approximating Continuous Systems by Timed Automata. In FMSB 2008 (LNCS), Vol. 5054. Springer, 77--89.
    [37]
    Petter Nilsson, Necmiye Ozay, and Jun Liu. 2017. Augmented finite transition systems as abstractions for control synthesis. Discrete Event Dynamic Systems 27, 2 (2017), 301--340.
    [38]
    Necmiye Ozay, Jun Liu, Pavithra Prabhakar, and Richard M. Murray. 2013. Computing augmented finite transition systems to synthesize switching protocols for polynomial switched systems. In ACC 2013, Washington, DC, USA, June 17--19, 2013. 6237--6244.
    [39]
    André Platzer and Jan-David Quesel. 2008. KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). In Automated Reasoning (LNCS), Alessandro Armando, Peter Baumgartner, and Gilles Dowek (Eds.), Vol. 5195. Springer, 171--178.
    [40]
    Pavithra Prabhakar and Miriam Garcia Soto. 2015. Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems. In VMCAI 2015, Mumbai, India, January 12--14, 2015. Proceedings. 318--335.
    [41]
    Stephen Prajna. 2006. Barrier certificates for nonlinear model validation. Automatica 42, 1 (2006), 117 -- 126.
    [42]
    Stefan Ratschan and Zhikun She. 2007. Safety Verification of Hybrid Systems by Constraint Propagation-based Abstraction Refinement. ACM Transactions on Embedded Computing Systems 6, 1, Article 8 (2007).
    [43]
    Gunther Reissig. 2011. Computing Abstractions of Nonlinear Systems. IEEE Trans. Automat. Contr. 56, 11 (2011), 2583--2598.
    [44]
    Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2017. HARE: A Hybrid Abstraction Refinement Engine for Verifying Non-linear Hybrid Automata. In TACAS 2017, Held as Part of ETAPS 2017, Uppsala, Sweden, April 22--29, 2017, Proceedings, Part I (LNCS), Axel Legay and Tiziana Margaria (Eds.), Vol. 10205. 573--588.
    [45]
    Matthias Rungger and Majid Zamani. 2016. SCOTS: A Tool for the Synthesis of Symbolic Controllers. In HSCC 2016, Vienna, Austria, April 12--14, 2016. 99--104.
    [46]
    Sriram Sankaranarayanan and Ashish Tiwari. 2011. Relational Abstractions for Continuous and Hybrid Systems. In CAV 2011 (LNCS), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer, 686--702.
    [47]
    Maciej Swat, Alexander Kel, and Hanspeter Herzel. 2004. Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20, 10 (2004), 1506--1511.
    [48]
    Ashish Tiwari. 2008. Abstractions for hybrid systems. Formal Methods in System Design 32, 1 (2008), 57--83.
    [49]
    Matej Troják, David Šafránek, Jakub Hrabec, Jakub Šalagovič, Františka Romanovská, and Jan Červený. 2016. E-Cyanobacterium.org: A Web-Based Platform for Systems Biology of Cyanobacteria. In CMSB 2016 (LNBI), Vol. 9859. Springer, 316--322.
    [50]
    Rafael Wisniewski and Christoffer Sloth. 2011. Abstraction of Dynamical Systems by Timed Automata. Modeling, Identification and Control 32, 2 (2011), 79--90.
    [51]
    Majid Zamani, Giordano Pola, Manuel Mazo Jr., and Paulo Tabuada. 2012. Symbolic Models for Nonlinear Control Systems Without Stability Assumptions. IEEE Trans. Automat. Contr. 57, 7 (2012), 1804--1809.

    Cited By

    View all
    • (2022)Decentralized modular hybrid supervisory control for the formation of unmanned helicoptersIET Control Theory & Applications10.1049/cth2.1237517:2(210-222)Online publication date: 22-Nov-2022
    • (2022)Abstract Simulation of Reaction Networks via Boolean NetworksComputational Methods in Systems Biology10.1007/978-3-031-15034-0_2(21-40)Online publication date: 14-Sep-2022

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    HSCC '19: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control
    April 2019
    299 pages
    ISBN:9781450362825
    DOI:10.1145/3302504
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 April 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. SMT solver
    2. discrete abstraction
    3. dynamical systems
    4. hybrid systems

    Qualifiers

    • Research-article

    Funding Sources

    • Czech Science Foundation

    Conference

    HSCC '19
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 153 of 373 submissions, 41%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)11
    • Downloads (Last 6 weeks)2

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Decentralized modular hybrid supervisory control for the formation of unmanned helicoptersIET Control Theory & Applications10.1049/cth2.1237517:2(210-222)Online publication date: 22-Nov-2022
    • (2022)Abstract Simulation of Reaction Networks via Boolean NetworksComputational Methods in Systems Biology10.1007/978-3-031-15034-0_2(21-40)Online publication date: 14-Sep-2022

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media