Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

TriWild: robust triangulation with curve constraints

Published: 12 July 2019 Publication History
  • Get Citation Alerts
  • Abstract

    We propose a robust 2D meshing algorithm, TriWild, to generate curved triangles reproducing smooth feature curves, leading to coarse meshes designed to match the simulation requirements necessary by applications and avoiding the geometrical errors introduced by linear meshes. The robustness and effectiveness of our technique are demonstrated by batch processing an SVG collection of 20k images, and by comparing our results against state of the art linear and curvilinear meshing algorithms. We demonstrate for our algorithm the practical utility of computing diffusion curves, fluid simulations, elastic deformations, and shape inflation on complex 2D geometries.

    Supplementary Material

    ZIP File (repository.zip)
    Implementation of the algorithm described in "TriWild: Robust Triangulation With Curve Constraints", by Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin, Daniele Panozzo. ACM Transactions on Graphics (SIGGRAPH 2019).
    The code is also available on GitHub: https://github.com/wildmeshing/TriWild
    MP4 File (papers_374.mp4)

    References

    [1]
    2015 Nektar++: An open-source spectral/hp element framework. Computer Physics Communications 192 (2015), 205 -- 219.
    [2]
    2018 Curvilinear mesh generation using a variational framework. Computer-Aided Design 103 (2018), 73 -- 91. 25th International Meshing Roundtable Special Issue: Advances in Mesh Generation.
    [3]
    Abaqus. 2018. Abaqus. http://www.feasol.com
    [4]
    Remi Abgrall, Cécile Dobrzynski, and Algiane Froehly. 2012. A method for computing curved 2D and 3D meshes via the linear elasticity analogy: preliminary results. Research Report RR-8061. INRIA. 15 pages. https://hal.inria.fr/hal-00728850
    [5]
    R. Abgrall, C. Dobrzynski, and A. Froehly. 2014. A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems. International Journal for Numerical Methods in Fluids 76, 4 (2014), 246--266.
    [6]
    Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Variational Tetrahedral Meshing. ACM Trans. Graph. 24, 3 (July 2005), 617--625.
    [7]
    Ansys. 2018. Ansys. https://www.ansys.com
    [8]
    Franz Aurenhammer. 1991. Voronoi Diagrams-a Survey of a Fundamental Geometric Data Structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345--405.
    [9]
    Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi Diagrams and Delaunay Triangulations. WORLD SCIENTIFIC.
    [10]
    I. Babuška and B.Q. Guo. 1992. The h, p and h-p version of the finite element method; basis theory and applications. Advances in Engineering Software 15, 3 (1992), 159 -- 174.
    [11]
    I. Babuška and B. Q. Guo. 1988. The h-p Version of the Finite Element Method for Domains with Curved Boundaries. SIAM J. Numer. Anal. 25, 4 (1988), 837--861. http://www.jstor.org/stable/2157607
    [12]
    Brenda S. Baker, Eric Grosse, and Conor S. Rafferty. 1988. Nonobtuse triangulation of polygons. Discrete & Computational Geometry 3, 2 (01 Jun 1988), 147--168.
    [13]
    Adam W. Bargteil and Elaine Cohen. 2014. Animation of Deformable Bodies with Quadratic Bézier Finite Elements. ACM Trans. Graph. 33, 3, Article 27 (June 2014), 10 pages.
    [14]
    F. Bassi and S. Rebay. 1997. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations. J. Comput. Phys. 138, 2 (1997), 251 -- 285.
    [15]
    Mark W Beall, Joe Walsh, and Mark S Shephard. 2003. Accessing CAD Geometry for Mesh Generation. In Proceedings of the 12th International Meshing Roundtable. 33--42.
    [16]
    Marshall Bern, David Eppstein, and John Gilbert. 1994. Provably good mesh generation. J. Comput. System Sci. 48, 3 (1994), 384--409.
    [17]
    Fleurianne Bertrand, Steffen Munzenmaier, and Gerhard Starke. 2014a. First-order System Least Squares on Curved Boundaries: Higher-order Raviart-Thomas Elements. SIAM J. Numer. Anal. 52, 6 (2014), 3165--3180.
    [18]
    Fleurianne Bertrand, Steffen Munzenmaier, and Gerhard Starke. 2014b. First-Order System Least Squares on Curved Boundaries: Lowest-Order Raviart-Thomas Elements. SIAM J. Numer. Anal. 52, 2 (2014), 880--894.
    [19]
    Christopher J. Bishop. 2016. Nonobtuse Triangulations of PSLGs. Discrete & Computational Geometry 56, 1 (2016).
    [20]
    Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette Yvinec. 2002. Triangulations in CGAL. Computational Geometry 22 (2002), 5--19.
    [21]
    Simon Boyé, Pascal Barla, and Gaël Guennebaud. 2012. A Vectorial Solver for Free-form Vector Gradients. ACM Trans. Graph. 31, 6, Article 173 (Nov. 2012), 9 pages.
    [22]
    Dietrich Braess. 2007. Finite Elements (third ed.). Cambridge University Press. Cambridge Books Online.
    [23]
    Oscar P Bruno and Matthew M Pohlman. 2003. High order surface representation. Topics in Computational Wave Propagation, Direct and Inverse Problems (2003).
    [24]
    Oleksiy Busaryev, Tamal K. Dey, and Joshua A. Levine. 2009. Repairing and Meshing Imperfect Shapes with Delaunay Refinement. In 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM '09). ACM, New York, NY, USA, 25--33.
    [25]
    S. A. Canann, S. N. Muthukrishnan, and R. K. Phillips. 1996. Topological refinement procedures for triangular finite element meshes. Engineering with Computers 12, 3 (01 Sep 1996), 243--255.
    [26]
    Scott A. Canann, Michael B. Stephenson, and Ted Blacker. 1993. Optismoothing: An optimization-driven approach to mesh smoothing. Finite Elements in Analysis and Design 13, 2 (1993), 185 -- 190.
    [27]
    David Cardoze, Alexandre Cunha, Gary L. Miller, Todd Phillips, and Noel Walkington. 2004. A Bézier-based Approach to Unstructured Moving Meshes. In Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG '04). ACM, New York, NY, USA, 310--319.
    [28]
    Long Chen and Jin-chao Xu. 2004. Optimal delaunay triangulations. Journal of Computational Mathematics (2004), 299--308.
    [29]
    Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Generation.
    [30]
    Philippe G Ciarlet and P-A Raviart. 1972. Interpolation theory over curved elements, with applications to finite element methods. Comput. Meth. Appl. Mech. Eng. 1, 2 (1972), 217--249.
    [31]
    Saikat Dey, Robert M. O'Bara, and Mark S. Shephard. 1999. Curvilinear Mesh Generation In 3D. In IMR. John Wiley & Sons, 407--417.
    [32]
    Cecile Dobrzynski and Ghina El Jannoun. 2017. High order mesh untangling for complex curved geometries. Research Report RR-9120. INRIA Bordeaux, équipe CARDAMOM. https://hal.inria.fr/hal-01632388
    [33]
    Luke Engvall and John A. Evans. 2017. Isogeometric unstructured tetrahedral and mixed-element Bernstein-Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 319 (2017), 83 -- 123.
    [34]
    Luke Engvall and John A. Evans. 2018. Mesh Quality Metrics for Isogeometric Bernstein-Bézier Discretizations. arXiv:1810.06975 (2018).
    [35]
    Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph. 37, 4 (2018).
    [36]
    C. O. Frederick, Y. C. Wong, and F. W. Edge. 1970. Two-dimensional automatic mesh generation for structural analysis. Internat. J. Numer. Methods Engrg. 2, 1 (1970), 133--144.
    [37]
    Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages.
    [38]
    Abel Gargallo Peiró, Francisco Javier Roca Navarro, Jaume Peraire Guitart, and Josep Sarrate Ramos. 2013. High-order mesh generation on CAD geometries. In Adaptive Modeling and Simulation 2013. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 301--312.
    [39]
    John Alan George. 1971. Computer Implementation of the Finite Element Method. Ph.D. Dissertation. Stanford, CA, USA. AAI7205916.
    [40]
    P.L. George and H. Borouchaki. 2012. Construction of tetrahedral meshes of degree two. Internat. J. Numer. Methods Engrg. 90, 9 (2012), 1156--1182.
    [41]
    Christophe Geuzaine, Amaury Johnen, Jonathan Lambrechts, Jean-François Remacle, and Thomas Toulorge. 2015. The Generation of Valid Curvilinear Meshes. Springer International Publishing, Cham, 15--39.
    [42]
    Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309--1331.
    [43]
    Arash Ghasemi, Lafayette K. Taylor, and James C. Newman, III. 2016. Massively Parallel Curved Spectral/Finite Element Mesh Generation of Industrial CAD Geometries in Two and Three Dimensions. Fluids Engineering Division Summer Meeting 50299 (2016).
    [44]
    Michael T Goodrich, Leonidas J Guibas, John Hershberger, and Paul J Tanenbaum. 1997. Snap rounding line segments efficiently in two and three dimensions. In Proceedings of the thirteenth annual symposium on Computational geometry. ACM, 284--293.
    [45]
    Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.
    [46]
    Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.
    [47]
    Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194, 39 (2005), 4135--4195.
    [48]
    Amaury Johnen, Jean François Remacle, and Christophe A. Geuzaine. 2013. Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233 (2013), 359 -- 372.
    [49]
    Pushkar Joshi and Nathan A. Carr. 2008. Repoussé: Automatic Inflation of 2D Artwork. In Proceedings of the Fifth Eurographics Conference on Sketch-Based Interfaces and Modeling (SBM'08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 49--55.
    [50]
    Steve L. Karman, J T. Erwin, Ryan S. Glasby, and Douglas Stefanski. 2016. High-Order Mesh Curving Using WCN Mesh Optimization. In 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum.
    [51]
    Patrick M. Knupp. 2000. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II, A framework for volume mesh optimization and the condition number of the Jacobian matrix. Internat. J. Numer. Methods Engrg. 48, 8 (2000), 1165--1185. <1165::AID-NME940>3.0.CO;2-Y
    [52]
    Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM Trans. Graph. 31, 4 (2012).
    [53]
    Qiukai Lu, Mark S. Shephard, Saurabh Tendulkar, and Mark W. Beall. 2013. Parallel Curved Mesh Adaptation for Large Scale High-Order Finite Element Simulations. In Proceedings of the 21st International Meshing Roundtable, Xiangmin Jiao and Jean-Christophe Weill (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419--436.
    [54]
    Xiaojuan Luo, Mark S Shephard, and Jean-Francois Remacle. 2001. The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC report 1 (2001).
    [55]
    Xiaojuan Luo, Mark S. Shephard, Jean-François Remacle, Robert M. O'Bara, Mark W. Beall, Barna A. Szabó, and Ricardo Actis. 2002. p-Version Mesh Generation Issues. In IMR.
    [56]
    Richard H. MacNeal. 1949. The solution of partial differential equations by means of electrical networks. Ph.D. Dissertation. CalTech.
    [57]
    Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic Approximation Within a Tolerance Volume. ACM Trans. Graph. 34, 4, Article 64 (July 2015), 12 pages.
    [58]
    MATLAB Partial Differential Equation Toolbox 2018. MATLAB Partial Differential Equation Toolbox. The MathWorks, Natick, MA, USA.
    [59]
    Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straśer. 2009. Interactive physically-based shape editing. Computer Aided Geometric Design 26, 6 (2009), 680 -- 694. Solid and Physical Modeling 2008.
    [60]
    P. Monk. 1987. A Mixed Finite Element Method for the Biharmonic Equation. SIAM J. Numer. Anal. 24, 4 (1987), 737--749.
    [61]
    D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, and J. Peiró. 2016. High-order curvilinear meshing using a thermo-elastic analogy. Computer-Aided Design 72 (2016), 130--139. 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation.
    [62]
    J. Tinsley Oden. 1994. Optimal h-p finite element methods. Computer Methods in Applied Mechanics and Engineering 112, 1 (1994), 309 -- 331.
    [63]
    Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot, and David Salesin. 2008. Diffusion Curves: A Vector Representation for Smooth-Shaded Images. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008), Vol. 27. http://maverick.inria.fr/Publications/2008/OBWBTS08
    [64]
    Magdalini Panagiotakopoulou, Martin Bergert, Anna Taubenberger, Jochen Guck, Dimos Poulikakos, and Aldo Ferrari. 2016. A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation. ACS Nano 10, 7 (2016), 6437--6448. 27268411.
    [65]
    Joaquim Peiró, Spencer J. Sherwin, and Sergio Giordana. 2008. Automatic reconstruction of a patient-specific high-order surface representation and its application to mesh generation for CFD calculations. Medical & Biological Engineering & Computing 46, 11 (01 Nov 2008), 1069--1083.
    [66]
    J. Peraire, M. Vahdati, K Morgan, and O. C. Zienkiewicz. 1987. Adaptive Remeshing for Compressible Flow Computations. J. Comput. Phys. 72, 2 (Oct. 1987), 449--466.
    [67]
    Per-Olof Persson and Jaime Peraire. 2009. Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.
    [68]
    Roman Poya, Ruben Sevilla, and Antonio J. Gil. 2016. A unified approach for a posteriori high-order curved mesh generation using solid mechanics. Computational Mechanics 58, 3 (01 Sep 2016), 457--490.
    [69]
    Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 37a (April 2017).
    [70]
    Xevi Roca, Abel Gargallo-Peiró, and Josep Sarrate. 2012. Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation. In Proceedings of the 20th International Meshing Roundtable, William Roshan Quadros (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 365--383.
    [71]
    Eloi Ruiz-Gironés, Abel Gargallo-Peiró, Josep Sarrate, and Xevi Roca. 2017. An augmented Lagrangian formulation to impose boundary conditions for distortion based mesh moving and curving. Procedia Engineering 203 (2017), 362 -- 374. 26thInternationalMeshingRoundtable, IMR26, 18--21 September 2017, Barcelona, Spain.
    [72]
    Eloi Ruiz-Gironés, Xevi Roca, and Jose Sarrate. 2016a. High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Computer-Aided Design 72 (2016), 52 -- 64. 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation.
    [73]
    Eloi Ruiz-Gironés, Josep Sarrate, and Xevi Roca. 2016b. Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy. Procedia Engineering 163 (2016), 315--327. 25th International Meshing Roundtable.
    [74]
    Edward A. Sadek. 1980. A scheme for the automatic generation of triangular finite elements. Internat. J. Numer. Methods Engrg. 15, 12 (1980), 1813--1822.
    [75]
    L Ridgway Scott. 1973. Finite element techniques for curved boundaries. Ph.D. Dissertation. Massachusetts Institute of Technology.
    [76]
    Ridgway Scott. 1975. Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12, 3 (1975), 404--427.
    [77]
    T.W. Sederberg and T. Nishita. 1990. Curve intersection using Bézier clipping. Computer-Aided Design 22, 9 (1990), 538 -- 549.
    [78]
    Ruben Sevilla, Sonia Fernández-Méndez, and Antonio Huerta. 2011. NURBS-Enhanced Finite Element Method (NEFEM). Arch. Comput. Methods Eng. 18, 4 (2011), 441--484.
    [79]
    Mark S. Shephard, Joseph E. Flaherty, Kenneth E. Jansen, Xiangrong Li, Xiaojuan Luo, Nicolas Chevaugeon, Jean-François Remacle, Mark W. Beall, and Robert M. O'Bara. 2005. Adaptive mesh generation for curved domains. Applied Numerical Mathematics 52, 2 (2005), 251 -- 271. ADAPT '03: Conference on Adaptive Methods for Partial Differential Equations and Large-Scale Computation.
    [80]
    SJ Sherwin and J Peiró. 2002. Mesh generation in curvilinear domains using high-order elements. Internat. J. Numer. Methods Engrg. 53, 1 (2002), 207--223.
    [81]
    J Shewchuk. 2012. Unstructured Mesh Generation. In Combinatorial Scientific Computing.
    [82]
    Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry Towards Geometric Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 203--222.
    [83]
    Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305--363.
    [84]
    Jonathan Richard Shewchuk. 1999. Lecture Notes on Delaunay Mesh Generation. Technical Report.
    [85]
    Jonathan Richard Shewchuk. 2002. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures. In Proceedings of the 11th International Meshing Roundtable, IMR 2002, Ithaca, New York, USA, September 15-18, 2002. 115--126. http://imr.sandia.gov/papers/abstracts/Sh247.html
    [86]
    Mike Stees and Suzanne M. Shontz. 2017. A high-order log barrier-based mesh generation and warping method. Procedia Engineering 203 (2017), 180 -- 192. 26th International Meshing Roundtable, IMR26, 18--21 September 2017, Barcelona, Spain.
    [87]
    Rolf Stenberg. 1984. Analysis of Mixed Finite Element Methods for the Stokes Problem: A Unified Approach. Math. Comp. 42, 165 (1984), 9--23. http://www.jstor.org/stable/2007557
    [88]
    Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-ray: Bas-relief Meshes for Adding Global Illumination Effects to Hand-drawn Characters. ACM Trans. Graph. 33, 2, Article 16 (April 2014), 15 pages.
    [89]
    Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lambrechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (2013), 8 -- 26.
    [90]
    Thomas Toulorge, Jonathan Lambrechts, and Jean-François Remacle. 2016. Optimizing the geometrical accuracy of curvilinear meshes. J. Comput. Phys. 310 (2016), 361 -- 380.
    [91]
    Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and Baruch Zukerman. 2018. 2D Arrangements. In CGAL User and Reference Manual (4.13 ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#PkgArrangement2Summary
    [92]
    Dong Xue, Leszek Demkowicz, et al. 2005. Control of geometry induced error in hp finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries. Int. J. Numer. Anal. Model 2, 3 (2005), 283--300.
    [93]
    M. A. Yerry and M. S. Shephard. 1983. A Modified Quadtree Approach To Finite Element Mesh Generation. IEEE Computer Graphics and Applications 3, 1 (Jan 1983), 39--46.
    [94]
    V.S. Ziel, H. Bériot, O. Atak, and G. Gabard. 2017. Comparison of 2D boundary curving methods with modal shape functions and a piecewise linear target mesh. Procedia Engineering 203 (2017), 91 -- 101. 26th International Meshing Roundtable, IMR26, 18--21 September 2017, Barcelona, Spain.
    [95]
    Patrick Zulian, Teseo Schneider, Hormann Kai, and Krause Rolf. 2017. Parametric finite elements with bijective mappings. BIT Numerical Mathematics (2017), 1--19.

    Cited By

    View all
    • (2024)Smooth Bijective Projection in a High-order ShellACM Transactions on Graphics10.1145/365820743:4(1-13)Online publication date: 19-Jul-2024
    • (2024)Robust Coarse Cage Construction With Small Approximation ErrorsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325520730:7(4234-4245)Online publication date: Jul-2024
    • (2024)3D Surface-Closed Mesh Clipping Based on Polygonal Partitioning for Surgical PlanningIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.323073930:7(3374-3385)Online publication date: Jul-2024
    • Show More Cited By

    Index Terms

    1. TriWild: robust triangulation with curve constraints

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 12 July 2019
      Published in TOG Volume 38, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. curved triangulation
      2. mesh generation
      3. robust geometry processing

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)521
      • Downloads (Last 6 weeks)46
      Reflects downloads up to 10 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Smooth Bijective Projection in a High-order ShellACM Transactions on Graphics10.1145/365820743:4(1-13)Online publication date: 19-Jul-2024
      • (2024)Robust Coarse Cage Construction With Small Approximation ErrorsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325520730:7(4234-4245)Online publication date: Jul-2024
      • (2024)3D Surface-Closed Mesh Clipping Based on Polygonal Partitioning for Surgical PlanningIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.323073930:7(3374-3385)Online publication date: Jul-2024
      • (2024)Evolutionary multi-objective high-order tetrahedral mesh optimizationComputer Aided Geometric Design10.1016/j.cagd.2024.102302111(102302)Online publication date: Jun-2024
      • (2024)Global optimization of optimal Delaunay triangulation with modified whale optimization algorithmEngineering with Computers10.1007/s00366-023-01928-2Online publication date: 29-Jan-2024
      • (2023)Discontinuity-Aware 2D Neural FieldsACM Transactions on Graphics10.1145/361837942:6(1-11)Online publication date: 5-Dec-2023
      • (2023)3D Bézier Guarding: Boundary-Conforming Curved Tetrahedral MeshingACM Transactions on Graphics10.1145/361833242:6(1-19)Online publication date: 5-Dec-2023
      • (2023)Error‐bounded Image TriangulationComputer Graphics Forum10.1111/cgf.1496742:7Online publication date: 31-Oct-2023
      • (2023)A fast, high-order scheme for evaluating volume potentials on complex 2D geometries via area-to-line integral conversion and domain mappingsJournal of Computational Physics10.1016/j.jcp.2022.111688472:COnline publication date: 1-Jan-2023
      • (2022)BoolSurfACM Transactions on Graphics10.1145/3550454.355546641:6(1-13)Online publication date: 30-Nov-2022
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media