Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Minimum distance computation of linear codes via genetic algorithms with permutation encoding

Published: 16 February 2019 Publication History

Abstract

We design a heuristic method, a genetic algorithm, for the computation of an upper bound of the minimum distance of a linear code over a finite field. By the use of the row reduced echelon form, we obtain a permutation encoding of the problem, so that its space of solutions does not depend on the size of the base field or the dimension of the code. Actually, the efficiency of our method only grows non-polynomially with respect to the length of the code.

References

[1]
M. Askali, A. Azouaoui, S. Nouh, M. Belkasmi. On the computing of the minimum distance of linear block codes by heuristic methods, International Journal of Communications, Network and System Sciences 5 (11) (2012), 774--784.
[2]
A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert, and A. Wassermann. Error-Correcting Linear Codes. Algorithms and Computation in Mathematics 18. Springer. 2006.
[3]
J. D. Dixon, The probability of generating the symmetric group, Mathematische Zeitschrift 110 (1969), 199--205.
[4]
E-G. Talbi. Metaheuristics: From Design to Implementation. John Wiley & Sons, Inc., 2009.
[5]
J. Gómez-Torrecillas, F.J. Lobillo, and G. Navarro. A new perspective of cyclicity in convolutional codes, IEEE Transactions on Information Theory 62 (5) (2016), 2702--2706.
[6]
J. Gómez-Torrecillas, F.J. Lobillo, and G. Navarro. A Sugiyama-like decoding algorithm for convolutional codes, IEEE Transactions on Information Theory 63 (2017) 6216--6226.
[7]
J. Gómez-Torrecillas, F.J. Lobillo G. Navarro and A. Neri. Hartmann-Tzeng bound and skew cyclic codes of designed Hamming distance, Finite Fields and Their Applications 50 (2018), 84--112.
[8]
J. Gómez-Torrecillas, F.J. Lobillo, and G. Navarro. Peterson-Gorenstein-Zierler algorithm for skew RS codes, Linear and Multilinear Algebra 66 (2018), 469--487.
[9]
J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Transactions on Information Theory 34 (5) (1988), 1354--1359.
[10]
Y. Saouter and G. Le Mestre, A FPGA implementation of Chen's algorithm, ACM Communications in Computer Algebra 44 (3) (2010), 140--141.
[11]
A. Vardy. The intractability of computing the minimum distance of a code, IEEE Transactions on Information Theory 43 (6) (1997), 1757--1766.

Cited By

View all
  • (2022)Mutation-Based Algebraic Artificial Bee Colony Algorithm for Computing the Distance of Linear CodesTurkish Journal of Mathematics and Computer Science10.47000/tjmcs.98242614:1(191-200)Online publication date: 30-Jun-2022
  • (2021)Approaching the Minimum Distance Problem by Algebraic Swarm-Based OptimizationsTurkish Journal of Mathematics and Computer Science10.47000/tjmcs.82556513:1(129-134)Online publication date: 30-Jun-2021
  • (2020)Genetic algorithms with permutation-based representation for computing the distance of linear codes.Swarm and Evolutionary Computation10.1016/j.swevo.2020.100797(100797)Online publication date: Nov-2020
  1. Minimum distance computation of linear codes via genetic algorithms with permutation encoding

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Communications in Computer Algebra
      ACM Communications in Computer Algebra  Volume 52, Issue 3
      September 2018
      67 pages
      ISSN:1932-2232
      EISSN:1932-2240
      DOI:10.1145/3313880
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 16 February 2019
      Published in SIGSAM-CCA Volume 52, Issue 3

      Check for updates

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 06 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Mutation-Based Algebraic Artificial Bee Colony Algorithm for Computing the Distance of Linear CodesTurkish Journal of Mathematics and Computer Science10.47000/tjmcs.98242614:1(191-200)Online publication date: 30-Jun-2022
      • (2021)Approaching the Minimum Distance Problem by Algebraic Swarm-Based OptimizationsTurkish Journal of Mathematics and Computer Science10.47000/tjmcs.82556513:1(129-134)Online publication date: 30-Jun-2021
      • (2020)Genetic algorithms with permutation-based representation for computing the distance of linear codes.Swarm and Evolutionary Computation10.1016/j.swevo.2020.100797(100797)Online publication date: Nov-2020

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media