Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Algorithm 998: The Robust LMI Parser—A Toolbox to Construct LMI Conditions for Uncertain Systems

Published: 08 August 2019 Publication History

Abstract

The ROLMIP (Robust LMI Parser) is a toolbox specialized in control theory for uncertain linear systems, built to work under MATLAB jointly with YALMIP, to ease the programming of sufficient Linear Matrix Inequality (LMI) conditions that, if feasible, assure the validity of parameter-dependent LMIs in the entire set of uncertainty considered. This article presents the new version of the ROLMIP toolbox, which was completely remodeled to provide a high-level user-friendly interface to cope with distinct uncertain domains (hypercube and multi-simplex) and to treat time-varying parameters in discrete- and continuous-time. By means of simple commands, the user is able to define polynomial matrices as well as to describe the desired parameter-dependent LMIs in an easy way, considerably reducing the programming time to end up with implementable LMI conditions. Therefore, ROLMIP helps the popularization of the state-of-the-art robust control methods for uncertain systems based on LMIs among graduate students, researchers, and engineers in control systems.

Supplementary Material

ZIP File (998.zip)
Software for The Robust LMI Parser?A Toolbox to Construct LMI Conditions for Uncertain Systems

References

[1]
C. M. Agulhari, A. Felipe, R. C. L. F. Oliveira, and P. L. D. Peres. 2019. Manual of “The Robust LMI Parser”: Version 3.0. Retrieved from: https://github.com/rolmip/rolmip.github.io/raw/master/manual_rolmip.pdf.
[2]
C. M. Agulhari, R. C. L. F. Oliveira, and P. L. D. Peres. 2012. Robust LMI parser: A computational package to construct LMI conditions for uncertain systems. In Proceedings of the 19th Brazilian Conference on Automation. 2298--2305. Retrieved from: http://rolmip.github.io.
[3]
E. D. Andersen and K. D. Andersen. 2000. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang (Eds.). Applied Optimization, Vol. 33. Springer US, 197--232. Retrieved from: http://www.mosek.com.
[4]
D. Avis and K. Fukuda. 1992. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 3 (Sept. 1992), 295--313.
[5]
A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski. 2009. Robust Optimization. Princeton University Press, Princeton, NJ.
[6]
D. Bertsimas, D. B. Brown, and C. Caramanis. 2011. Theory and applications of robust optimization. SIAM Rev. 53, 3 (Aug. 2011), 464--501.
[7]
H.-G. Beyer and B. Sendhoff. 2007. Robust optimization—A comprehensive survey. Comput. Meth. Appl. Mech. Eng. 196, 33 (July 2007), 3190--3218.
[8]
P.-A. Bliman. 2004a. A convex approach to robust stability for linear systems with uncertain scalar parameters. SIAM J. Cont. Optim. 42, 6 (2004), 2016--2042.
[9]
P.-A. Bliman. 2004b. An existence result for polynomial solutions of parameter-dependent LMIs. Syst. Cont. Lett. 51, 3--4 (Mar. 2004), 165--169.
[10]
P.-A. Bliman, R. C. L. F. Oliveira, V. F. Montagner, and P. L. D. Peres. 2006. Existence of homogeneous polynomial solutions for parameter-dependent linear matrix inequalities with parameters in the simplex. In Proceedings of the 45th IEEE Conference on Decision and Control. 1486--1491.
[11]
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. 1994. Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia, PA.
[12]
M. Chamanbaz, F. Dabbene, D. Peaucelle, and R. Tempo. 2015. R-RoMulOC: A unified tool for randomized and robust multiobjective control. In Proceedings of the 8th IFAC Symposium on Robust Control Design (ROCOND’15).
[13]
G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2003a. Homogeneous Lyapunov functions for systems with structured uncertainties. Automatica 39, 6 (June 2003), 1027--1035.
[14]
G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2003b. Solving quadratic distance problems: An LMI-based approach. IEEE Trans. Automat. Cont. 48, 2 (Feb. 2003), 200--212.
[15]
G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2004. Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems. In Proceedings of the 43rd IEEE Conference on Decision and Control. 4095--4100.
[16]
G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2005. Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach. IEEE Trans. Automat. Cont. 50, 3 (Mar. 2005), 365--370.
[17]
G. Chesi and D. Henrion. 2009. Guest editorial: Special issue on positive polynomials in control. IEEE Trans. Automat. Cont. 54, 5 (May 2009), 935--936.
[18]
M. C. de Oliveira, J. C. Geromel, and L. Hsu. 1999. LMI characterization of structural and robust stability: The discrete-time case. Linear Algebra and Its Applications 296, 1--3 (June 1999), 27--38.
[19]
L. El Ghaoui, F. Oustry, and H. Lebret. 1998. Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9, 1 (Nov. 1998), 33--52.
[20]
E. Feron, P. Apkarian, and P. Gahinet. 1996. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans. Automat. Cont. 41, 7 (July 1996), 1041--1046.
[21]
P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali. 1995. LMI Control Toolbox User’s Guide. The Math Works, Natick, MA.
[22]
J. C. Geromel, M. C. de Oliveira, and L. Hsu. 1998. LMI characterization of structural and robust stability. Lin. Alg. Appl. 285, 1--3 (Dec. 1998), 69--80.
[23]
G. H. Hardy, J. E. Littlewood, and G. Pólya. 1952. Inequalities (2nd ed.). Cambridge University Press, Cambridge, UK.
[24]
D. Henrion and A. Garulli (Eds.). 2005. Positive Polynomials in Control. Lecture Notes on Control and Information Sciences, Vol. 312. Springer-Verlag, Berlin, Germany.
[25]
D. Henrion and J. B. Lasserre. 2003. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29, 2 (June 2003), 165--194.
[26]
M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. 2013. Multi-parametric toolbox 3.0. In Proceedings of the European Control Conference. 502--510.
[27]
A. Hjartarson, A. Packard, and P. Seiler. 2015. LPVTools: A toolbox for modeling, analysis and synthesis of parameter varying control systems. In Proceedings of the 1st IFAC Workshop on Linear Parameter Varying Systems (LPVS’15). 139--145.
[28]
J. B. Lasserre. 2001. Global optimization with polynomials and the problem of moments. SIAM J. Cont. Optim. 11, 3 (Feb. 2001), 796--817.
[29]
J. B. Lasserre. 2015. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge University Press, Cambridge, UK.
[30]
J. Löfberg. 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design. 284--289. Retrieved from: http://yalmip.github.io.
[31]
R. C. L. F. Oliveira, P.-A. Bliman, and P. L. D. Peres. 2008a. Robust LMIs with parameters in multi-simplex: Existence of solutions and applications. In Proceedings of the 47th IEEE Conference on Decision and Control. 2226--2231.
[32]
R. C. L. F. Oliveira, M. C. de Oliveira, and P. L. D. Peres. 2008b. Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions. Syst. Cont. Lett. 57, 8 (Aug. 2008), 680--689.
[33]
R. C. L. F. Oliveira and P. L. D. Peres. 2005a. A simple and less conservative test for D-stability. SIAM J. Matrix Anal. Appl. 26, 2 (Jan. 2005), 415--425.
[34]
R. C. L. F. Oliveira and P. L. D. Peres. 2005b. Stability of polytopes of matrices via affine parameter-dependent Lyapunov functions: Asymptotically exact LMI conditions. Lin. Alg. Appl. 405 (Aug. 2005), 209--228.
[35]
R. C. L. F. Oliveira and P. L. D. Peres. 2007. Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Automat. Cont. 52, 7 (July 2007), 1334--1340.
[36]
R. C. L. F. Oliveira and P. L. D. Peres. 2008. A convex optimization procedure to compute H<sub>2</sub> and H ∞ norms for uncertain linear systems in polytopic domains. Optim. Cont. Appl. Meth. 29, 4 (July/Aug. 2008), 295--312.
[37]
P. A. Parrilo. 2000. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. Dissertation. California Institute of Technology, Pasadena, CA.
[38]
P. A. Parrilo. 2003. Semidefinite programming relaxations for semialgebraic problems. Math. Prog.: Series B 96, 2 (2003), 293--320.
[39]
D. Peaucelle and D. Arzelier. 2006. Robust multi-objective control toolbox. In Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design. 1152--1157.
[40]
D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou. 2000. A new robust -stability condition for real convex polytopic uncertainty. Syst. Cont. Lett. 40, 1 (May 2000), 21--30.
[41]
D. Peaucelle and M. Sato. 2009. LMI tests for positive definite polynomials: Slack variable approach. IEEE Trans. Automat. Cont. 54, 4 (Apr. 2009), 886--891.
[42]
D. Peaucelle, A. Tremba, D. Arzelier, A. Bortott, G. C. Calafiore, G. Chevarria, F. Dabbene, E. Gryazina, B. T. Polyak, P. S. Shcherbakov, M. Sevin, Ph. Spiesser, and R. Tempo. 2014. R-RoMulOC : Randomized and Robust Multi-Objective Control toolbox. Retrieved from: http://projects.laas.fr/OLOCEP/romuloc.
[43]
S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. 2004. SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB—User’s Guide. Retrieved from: http://www.cds.caltech.edu/sostools.
[44]
D. C. W. Ramos and P. L. D. Peres. 2001. A less conservative LMI condition for the robust stability of discrete-time uncertain systems. Syst. Cont. Lett. 43, 5 (Aug. 2001), 371--378.
[45]
D. C. W. Ramos and P. L. D. Peres. 2002. An LMI condition for the robust stability of uncertain continuous-time linear systems. IEEE Trans. Automat. Cont. 47, 4 (Apr. 2002), 675--678.
[46]
M. Sato. 2005. Robust performance analysis of linear time-invariant parameter-dependent systems using higher-order Lyapunov functions. In Proceedings of theAmerican Control Conference. 615--620.
[47]
C. W. Scherer. 2005. Relaxations for robust linear matrix inequality problems with verifications for exactness. SIAM J. Matrix Anal. Appl. 27, 2 (June 2005), 365--395.
[48]
C. W. Scherer and C. W. J. Hol. 2006. Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Prog.: Series B 107, 1--2 (June 2006), 189--211.
[49]
J. F. Sturm. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. Softw. 11, 1--4 (1999), 625--653. Retrieved from: http://sedumi.ie.lehigh.edu/.
[50]
A. Tremba, G. C. Calafiore, F. Dabbene, E. Gryazina, B. T. Polyak, P. S. Shcherbakov, and R. Tempo. 2008. RACT: Randomized algorithms control toolbox for MATLAB. In Proceedings of the 17th IFAC World Congress, Vol. 41. 390--395. Retrieved from: http://ract.sourceforge.net.
[51]
A. Trofino. 1999. Parameter dependent Lyapunov functions for a class of uncertain linear systems: An LMI approach. In Proceedings of the 38th IEEE Conference on Decision and Control, Vol. 1. 2341--2346.
[52]
A. Trofino and C. E. de Souza. 2001. Biquadratic stability of uncertain linear systems. IEEE Trans. Automat. Cont. 46, 8 (Aug. 2001), 1303--1307.

Cited By

View all
  • (2025)Output-feedback control design for Takagi-Sugeno fuzzy systems through Lyapunov functions depending polynomially on the statesFuzzy Sets and Systems10.1016/j.fss.2024.109156499(109156)Online publication date: Jan-2025
  • (2024)Robust State-Feedback Control and Convergence Analysis for Uncertain LPV Systems Using State and Parameter EstimationMathematics10.3390/math1213194112:13(1941)Online publication date: 22-Jun-2024
  • (2024)Robust Adaptive Control of Linear Parameter-Varying Systems with Unmatched UncertaintiesJournal of Guidance, Control, and Dynamics10.2514/1.G007974(1-18)Online publication date: 27-Jun-2024
  • Show More Cited By

Index Terms

  1. Algorithm 998: The Robust LMI Parser—A Toolbox to Construct LMI Conditions for Uncertain Systems

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 45, Issue 3
    September 2019
    357 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/3349340
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 August 2019
    Accepted: 01 February 2019
    Revised: 01 February 2019
    Received: 01 December 2017
    Published in TOMS Volume 45, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. LMIs
    2. Parser
    3. computational package
    4. robust control

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Fundação de Amparo à Pesquisa do Estado de São Paulo

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)29
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Output-feedback control design for Takagi-Sugeno fuzzy systems through Lyapunov functions depending polynomially on the statesFuzzy Sets and Systems10.1016/j.fss.2024.109156499(109156)Online publication date: Jan-2025
    • (2024)Robust State-Feedback Control and Convergence Analysis for Uncertain LPV Systems Using State and Parameter EstimationMathematics10.3390/math1213194112:13(1941)Online publication date: 22-Jun-2024
    • (2024)Robust Adaptive Control of Linear Parameter-Varying Systems with Unmatched UncertaintiesJournal of Guidance, Control, and Dynamics10.2514/1.G007974(1-18)Online publication date: 27-Jun-2024
    • (2024)Dynamic Output-Feedback Switching Control for Discrete-Time LPV Switched Systems2024 American Control Conference (ACC)10.23919/ACC60939.2024.10644882(1861-1866)Online publication date: 10-Jul-2024
    • (2024)Braking reconstruction control for fault-tolerance in electro-mechanical brake actuator failuresProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering10.1177/09544070241296584Online publication date: 21-Nov-2024
    • (2024)Cost-Effective Estimation of Vehicle Lateral Tire-Road Forces and Sideslip Angle via Nonlinear Sampled-Data Observers: Theory and ExperimentsIEEE/ASME Transactions on Mechatronics10.1109/TMECH.2024.338277729:6(4606-4617)Online publication date: Dec-2024
    • (2024)Control Design for Cyber-Physical Uncertain Systems Under Unreliable Markovian Network Susceptible to Denial-of-Service AttacksIEEE Transactions on Circuits and Systems II: Express Briefs10.1109/TCSII.2023.330780971:2(732-736)Online publication date: Feb-2024
    • (2024)Stochastic Gain-Scheduled Control of Discrete-Time Systems Characterized by Random PolytopesIEEE Control Systems Letters10.1109/LCSYS.2024.33661798(229-234)Online publication date: 2024
    • (2024)Preliminary Design for Reference tracking feedback for Medical Cyber-Physical Pharmacokinetic Systems2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA)10.1109/ICA-ACCA62622.2024.10766825(1-6)Online publication date: 20-Oct-2024
    • (2024) Robust H 2 LMI-based Control of Grid-Connected Photovoltaic Systems with LCL Filters under Parametric Uncertainty 2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA)10.1109/ICA-ACCA62622.2024.10766804(1-6)Online publication date: 20-Oct-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media