Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3324033.3324042acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiceccConference Proceedingsconference-collections
research-article

Detection of Stator Faults in Induction Motors Using Alpha-Beta Transform and Image Analysis

Published: 13 April 2019 Publication History

Abstract

In the present work, the diagnosis of incipient faults in three-phase induction motors is proposed. The system consists in to submit the three-phase induction motor signals to the alpha-beta transform. After that, the pattern obtained from the alpha-beta transform is submitted to the Hough transform in order to find the set of the parameters that describe the pattern. Finally, the set of parameters obtained by the Hough transform is used as input to the KNN algorithm to classify into three groups: Not fault, Medium fault, and Severe fault. The Classifier was tested obtaining 93.9% of accuracy.

References

[1]
Amaral, T. G., Pires, V. F., Martins, J. F., Pires, A. J., & Crisostomo, M. M. (2007, November). Image processing to a neuro-fuzzy classifier for detection and diagnosis of induction motor stator fault. In Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE (pp. 2408--2413). IEEE.
[2]
Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern recognition, 13(2), 111--122.
[3]
Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Godoy, W. F., & Palácios, R. H. C. (2017). Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research, 143, 347--356.
[4]
Bhowmik, P. S., Prakash, M., & Pradhan, S. (2014, October). A novel neuro-classifier using Multiscale Permutation Entropy for motor fault diagnosis. In Control Applications (CCA), 2014 IEEE Conference on (pp. 370--375). IEEE.Sannella, M. J. 1994. Constraint Satisfaction and Debugging for Interactive User Interfaces. Doctoral Thesis. UMI Order Number: UMI Order No. GAX95--09398., University of Washington.
[5]
Climente-Alarcon, V. I. C. E. N. T. E., Antonino-Daviu, J. A., Riera-Guasp, M., Puche-Panadero, R., & Escobar, L. (2012). Application of the Wigner--Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics. Electric Power Systems Research, 91, 28--36.
[6]
Duran, M., Gonzalez-Prieto, I., Rios, N., & Barrero, F. (2018). A simple, fast and robust open-phase fault detection technique for six-phase induction motor drives. IEEE Trans. Power Electron, 33(1), 547--557.
[7]
Ebrahimi, B. M., & Faiz, J. (2010). Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring. IEEE Transactions on Power Electronics, 25(10), 2673--2682.
[8]
Henao, H., Capolino, G. A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., & Hedayati-Kia, S. (2014). Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE industrial electronics magazine, 8(2), 31--42.
[9]
Karmakar, S., Chattopadhyay, S., Mitra, M., & Sengupta, S. (2016). Induction motor fault diagnosis. Publisher Springer Singapore.
[10]
Konar, P., & Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing, 11(6), 4203--4211.
[11]
Mukhopadhyay, P., & Chaudhuri, B. B. (2015). A survey of Hough Transform. Pattern Recognition, 48(3), 993--1010.
[12]
Ondel, O., Boutleux, E., & Clerc, G. (2006). A method to detect broken bars in induction machine using pattern recognition techniques. IEEE Transactions on industry applications, 42(4), 916--923.
[13]
PEH, D. (2007). RO Duda, PE Hart, and DG Stork, Pattern Classification, New York: John Wiley & Sons, 2001, pp. xx+ 654, ISBN: 0-471-05669-3. Journal of Classification, 24(2), 305--307.
[14]
Shi, P., Chen, Z., Vagapov, Y., & Zouaoui, Z. (2014). A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor. Mechanical Systems and Signal Processing, 42(1-2), 388--403.
[15]
Soualhi, A., Clerc, G., & Razik, H. (2013). Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Transactions on Industrial Electronics, 60(9), 4053--4062.
[16]
Verma, A., Sarangi, S., & Kolekar, M. H. (2014). Stator winding fault prediction of induction motors using multiscale entropy and grey fuzzy optimization methods. Computers & Electrical Engineering, 40(7), 2246--2258.
[17]
García Guevara, F. (2017). Diagnóstico de Fallas en Máquinas Eléctricas (PhD tesis) Instituto Tecnológico de Aguascalientes.
[18]
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: springer.

Index Terms

  1. Detection of Stator Faults in Induction Motors Using Alpha-Beta Transform and Image Analysis

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICECC '19: Proceedings of the 2019 2nd International Conference on Electronics, Communications and Control Engineering
    April 2019
    105 pages
    ISBN:9781450362634
    DOI:10.1145/3324033
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 April 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Alpha-beta transform
    2. Detection of faults
    3. Hough Transform
    4. Induction motors

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICECC 2019

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 52
      Total Downloads
    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media