Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3326172.3326179acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbetConference Proceedingsconference-collections
research-article

Correlation Indices of Electroencephalogram-Based Relative Powers during Human Emotion Processing

Published: 28 March 2019 Publication History

Abstract

The present study sought to employ audio-visual video clip stimuli to explore the electroencephalography-based (EEG) correlation between various emotional states. To that end, seven short video clips were shown to ten volunteer participants without health conditions whilst emotional EEG data were captured. The method of independent component analysis and wavelets (AICA-WT) was adopted for screening the extracted data. The correlation indices were computed based on spectral features employing the relative powers (RP) of delta (ΔRP), theta (θRP), alpha (αRP), beta (βRP), and gamma (γRP). The next step was calculation of Pearson's correlation between the of the neutral state and the of the six fundamental emotional states (i.e. anger, anxiety, disgust, happiness, sadness and surprise) of every EEG channel for different brain areas (i.e. frontal, temporal, parietal and occipital scalp). According to the findings obtained, the correlation of brain activity and emotional states among the brain areas observable in healthy EEG data can be investigated based on the relevant indices afforded by the new denoising method alongside EEG-based correlation analysis of the RP.

References

[1]
M. Murugappan, N. Ramachandran, and Y. Sazali, Classification of human emotion from EEG using discrete wavelet transform, Journal of Biomedical Science and Engineering, vol. 3, p. 390, 2010.
[2]
S. Jerritta, M. Murugappan, W. Khairunizam, and S. Yaacob, Electrocardiogram-based emotion recognition system using empirical mode decomposition and discrete Fourier transform, Expert Systems, vol. 31, pp. 110--120, 2014.
[3]
D. O. Bos, EEG-based emotion recognition, The Influence of Visual and Auditory Stimuli, vol. 56, pp. 1--17, 2006.
[4]
J. Zaki, J. I. Davis, and K. N. Ochsner, Overlapping activity in anterior insula during interoception and emotional experience, Neuroimage, vol. 62, pp. 493--499, 2012.
[5]
T. Xu, Y. Zhou, Z. Wang, and Y. Peng, Learning Emotions EEG-based Recognition and Brain Activity: A Survey Study on BCI for Intelligent Tutoring System, Procedia Computer Science, vol. 130, pp. 376--382, 2018.
[6]
E. A. Kensinger, Remembering emotional experiences: The contribution of valence and arousal, Reviews in the Neurosciences, vol. 15, pp. 241--252, 2004.
[7]
A. Mehrabian, Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament, Current Psychology, vol. 14, pp. 261--292, 1996.
[8]
N. K. Al-Qazzaz, S. H. B. Ali, S. A. Ahmad, K. Chellappan, M. S. Islam, and J. Escudero, Role of EEG as Biomarker in the Early Detection and Classification of Dementia, The Scientific World Journal, vol. 2014, 2014.
[9]
Z. Khalili and M. H. Moradi, Emotion recognition system using brain and peripheral signals: using correlation dimension to improve the results of EEG, in Neural Networks, 2009. IJCNN 2009. International Joint Conference on, 2009, pp. 1571--1575.
[10]
A. Mert and A. Akan, Emotion recognition based on time--frequency distribution of EEG signals using multivariate synchrosqueezing transform, Digital Signal Processing, vol. 81, pp. 106--115, 2018.
[11]
H. Ali, M. Hariharan, S. Yaacob, and A. H. Adom, Facial emotion recognition using empirical mode decomposition, Expert Systems with Applications, vol. 42, pp. 1261--1277, 2015.
[12]
K. Natarajan, R. Acharya, F. Alias, T. Tiboleng, and S. K. Puthusserypady, Nonlinear analysis of EEG signals at different mental states, BioMedical Engineering OnLine, vol. 3, p. 7, 2004.
[13]
J. Gao, J. Hu, and W.-w. Tung, Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering, PloS one, vol. 6, p. e24331, 2011.
[14]
J. Selvaraj, M. Murugappan, K. Wan, and S. Yaacob, Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst, Biomedical engineering online, vol. 12, p. 44, 2013.
[15]
J. Rottenberg, J. J. Gross, F. H. Wilhelm, S. Najmi, and I. H. Gotlib, Crying threshold and intensity in major depressive disorder, Journal of abnormal psychology, vol. 111, p. 302, 2002.
[16]
R. Yuvaraj, M. Murugappan, N. M. Ibrahim, M. I. Omar, K. Sundaraj, K. Mohamad, et al., On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing, Behavioral and Brain Functions, vol. 10, p. 12, 2014.
[17]
S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, et al., Deap: A database for emotion analysis; using physiological signals, IEEE Transactions on Affective Computing, vol. 3, pp. 18--31, 2012.
[18]
N. K. Al-Qazzaz, S. Hamid Bin Mohd Ali, S. A. Ahmad, M. S. Islam, and J. Escudero, Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA--WT during Working Memory Tasks, Sensors, vol. 17, p. 1326, 2017.
[19]
A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, Neural Networks, IEEE Transactions on, vol. 10, pp. 626--634, 1999.
[20]
J. Escudero, R. Hornero, D. Abásolo, and A. Fernández, Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer's disease, Medical engineering & physics, vol. 31, pp. 872--879, 2009.
[21]
M. Teplan, A. Krakovská, and M. Špajdel, Spectral EEG features of a Short Psycho-physiological Relaxation, Measurement Science Review, vol. 14, pp. 237--242, 2014.
[22]
K.-E. Ko, H.-C. Yang, and K.-B. Sim, Emotion recognition using EEG signals with relative power values and Bayesian network, International Journal of Control, Automation and Systems, vol. 7, pp. 865--870, 2009.

Cited By

View all
  • (2024)Verbesserung der Erkennung des Arbeitsgedächtnisses von Demenz-Patienten mithilfe von Entropie-basierten Merkmalen und dem Local Tangent Space Alignment AlgorithmusFortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML10.1007/978-3-031-52856-9_14(381-411)Online publication date: 18-May-2024
  • (2024)Schätzungen von emotionalen Synchronisationsindizes für Gehirnregionen mithilfe der Elektroenzephalogramm-SignalanalyseFortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML10.1007/978-3-031-52856-9_13(349-380)Online publication date: 18-May-2024
  • (2023)Recognition Enhancement of Dementia Patients’ Working Memory Using Entropy-Based Features and Local Tangent Space Alignment AlgorithmAdvances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning10.1007/978-3-031-23239-8_14(345-373)Online publication date: 23-Feb-2023
  • Show More Cited By

Index Terms

  1. Correlation Indices of Electroencephalogram-Based Relative Powers during Human Emotion Processing

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICBET '19: Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology
    March 2019
    327 pages
    ISBN:9781450361309
    DOI:10.1145/3326172
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 March 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Correlation
    2. Electroencephalography
    3. Emotion
    4. Independent components analysis
    5. Relative power
    6. Wavelet

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICBET ' 19

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)13
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 02 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Verbesserung der Erkennung des Arbeitsgedächtnisses von Demenz-Patienten mithilfe von Entropie-basierten Merkmalen und dem Local Tangent Space Alignment AlgorithmusFortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML10.1007/978-3-031-52856-9_14(381-411)Online publication date: 18-May-2024
    • (2024)Schätzungen von emotionalen Synchronisationsindizes für Gehirnregionen mithilfe der Elektroenzephalogramm-SignalanalyseFortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML10.1007/978-3-031-52856-9_13(349-380)Online publication date: 18-May-2024
    • (2023)Recognition Enhancement of Dementia Patients’ Working Memory Using Entropy-Based Features and Local Tangent Space Alignment AlgorithmAdvances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning10.1007/978-3-031-23239-8_14(345-373)Online publication date: 23-Feb-2023
    • (2023)Estimations of Emotional Synchronization Indices for Brain Regions Using Electroencephalogram Signal AnalysisAdvances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning10.1007/978-3-031-23239-8_13(315-344)Online publication date: 23-Feb-2023
    • (2021)Complexity and Entropy Analysis to Improve Gender Identification from Emotional-Based EEGsJournal of Healthcare Engineering10.1155/2021/85370002021(1-17)Online publication date: 21-Sep-2021
    • (2021)Persistent Homology-Based Topological Analysis on the Gestalt Patterns during Human Brain Cognition ProcessJournal of Healthcare Engineering10.1155/2021/23343322021(1-11)Online publication date: 1-Nov-2021
    • (2021)Multichannel Optimization With Hybrid Spectral- Entropy Markers for Gender Identification Enhancement of Emotional-Based EEGsIEEE Access10.1109/ACCESS.2021.30964309(107059-107078)Online publication date: 2021
    • (2019)Electroencephalogram Profiles for Emotion Identification over the Brain Regions Using Spectral, Entropy and Temporal BiomarkersSensors10.3390/s2001005920:1(59)Online publication date: 20-Dec-2019

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media