Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem

Published: 19 May 2020 Publication History
  • Get Citation Alerts
  • Abstract

    The Singular Value Decomposition (SVD) is widely used in numerical analysis and scientific computing applications, including dimensionality reduction, data compression and clustering, and computation of pseudo-inverses. In many cases, a crucial part of the SVD of a general matrix is to find the SVD of an associated bidiagonal matrix. This article discusses an algorithm to compute the SVD of a bidiagonal matrix through the eigenpairs of an associated symmetric tridiagonal matrix. The algorithm enables the computation of only a subset of singular values and corresponding vectors, with potential performance gains. The article focuses on a sequential version of the algorithm, and discusses special cases and implementation details. The implementation, called BDSVDX, has been included in the LAPACK library. We use a large set of bidiagonal matrices to assess the accuracy of the implementation, both in single and double precision, as well as to identify potential shortcomings. The results show that BDSVDX can be up to three orders of magnitude faster than existing algorithms, which are limited to the computation of a full SVD. We also show comparisons of an implementation that uses BDSVDX as a building block for the computation of the SVD of general matrices.

    References

    [1]
    M. Abramowitz. 1974. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, NY.
    [2]
    E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA.
    [3]
    T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, and P. R. Willems. 2011. Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput. 37 (2011), 783--794.
    [4]
    Å. Björck. 1996. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA.
    [5]
    L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. 1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA.
    [6]
    J. Demmel. 1997. Applied Numerical Linear Algebra. Vol. 56. Society for Industrial and Applied Mathematics, Philadelphia, PA.
    [7]
    J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. Bai, Zhaojun (Ed.).
    [8]
    J. Demmel and W. Kahan. 1990. Accurate singular values of bidiagonal matrices. SIAM J. Sci. and Stat. Comput. 11 (1990), 873--912.
    [9]
    J. Demmel, O. Marques, C. Voemel, and B. Parlett. 2008. Performance and accuracy of LAPACK’s symmetric tridiagonal eigensolvers. SIAM J. Sci. Comput. 30 (2008), 1508--1526.
    [10]
    I. Dhillon. 1997. A New O(N2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. Ph.D. Dissertation. University of California, Berkeley.
    [11]
    I. Dhillon, G. Fann, and B. Parlett. 1997. Application of a new algorithm for the symmetric eigenproblem to computational quantum chemistry. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing. SIAM, Philadelphia. http://www.cs.utexas.edu/ inderjit/public_papers/fannchem1.ps.
    [12]
    I. Dhillon and B. Parlett. 2004. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387 (2004), 1--28.
    [13]
    I. Dhillon, B. Parlett, and C. Voemel. 2006. The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw. 32 (2006), 533--560.
    [14]
    J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki. 2018. The singular value decomposition: Anatomy of optimizing an algorithm for extreme scale. SIAM Rev. 60, 4 (2018), 808--865.
    [15]
    K. Fan and A. Hoffman. 1955. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc. 6, 1 (1955), 111--116.
    [16]
    G. Golub and W. Kahan. 1965. Calculating the singular values and pseudo-inverse of a matrix. J. Society for Ind. Appl. Math. Ser. B Numer. Anal. 2, 2 (1965), 205--224.
    [17]
    B. Grosser and B. Lang. 2003. An O(n2) algorithm for the bidiagonal SVD. Linear Algebra Appl. 358, 1 (2003), 45--70.
    [18]
    B. Grosser and B. Lang. 2005. On symmetric eigenproblems induced by the bidiagonal SVD. SIAM. J. Matrix Anal. and Appl. 26, 3 (2005), 599--620.
    [19]
    Nicholas J. Higham and Pythagoras Papadimitriou. 1993. Parallel Singular Value Decomposition via the Polar Decomposition. University of Manchester, Department of Mathematics.
    [20]
    Intel. 2017a. Intel(R) Fortran Compiler 2018 Update 1 for Linux.
    [21]
    Intel. 2017b. Intel(R) Math Kernel Library 2018 Update 1 for Linux.
    [22]
    LAPACK. 2018. LAPACK—Linear Algebra PACKage. https://github.com/Reference-LAPACK.
    [23]
    S. Li, M. Gu, L. Cheng, X. Chi, and M. Sun. 2014. An accelerated divide-and-conquer algorithm for the bidiagonal SVD problem. SIAM. J. Matrix Anal. and Appl. 35 (2014), 1038--1057.
    [24]
    O. Marques, J. Demmel, C. Voemel, and B. Parlett. 2008. A testing infrastructure for symmetric tridiagonal eigensolvers. ACM Trans. Math. Softw. 35 (2008), 8:1--8:13.
    [25]
    O. Marques and P. B. Vasconcelos. 2016. Computing the bidiagonal SVD through an associated tridiagonal eigenproblem. In 12th International Conference on High Performance Computing for Computational Science (VECPAR 2016) Porto, Portugal, June 28-30, 2016, Revised Selected Papers. Springer, Heildeberg, Germany, 64--74.
    [26]
    MatrixMarket. 2018. Matrix Market. Retrieved from http://math.nist.gov/MatrixMarket.
    [27]
    A. M. Matsekh. 2005. The Godunov-inverse iteration: A fast and accurate solution to the symmetric tridiagonal eigenvalue problem. Appl. Numer. Math. 54, 2 (2005), 208--221.
    [28]
    Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. 2010. Optimizing Halley’s iteration for computing the matrix polar decomposition. SIAM J. Matrix Anal. Appl. 31, 5 (2010), 2700--2720.
    [29]
    Yuji Nakatsukasa and Nicholas J. Higham. 2013. Stable and efficient spectral divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput. 35, 3 (2013), A1325--A1349.
    [30]
    F. Olver, D. Lozier, R. Boisvert, and C. Clark. 2010. NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press, New York.
    [31]
    B. Parlett. 1995. The new QD algorithms. Acta Numer. 4 (1995), 459--491.
    [32]
    B. Parlett. 1998. The Symmetric Eigenvalue Problem. Vol. 20. Society for Industrial and Applied Mathematics, Philadelphia, PA.
    [33]
    B. Parlett and C. Vömel. 2009. The spectrum of a glued matrix. SIAM J. Matrix Anal. Appl. 31, 1 (2009), 114--132.
    [34]
    ScaLAPACK. 2012. ScaLAPACK, version 2.0.2. Retrieved from http://www.netlib.org/scalapack.
    [35]
    TAU. 2018. TAU Performance System. Retrieved from https://www.cs.uoregon.edu/research/tau.
    [36]
    C. Voemel. 2010. ScaLAPACK’s MRRR algorithm. ACM Trans. Math. Softw. 37 (2010), 1--35.
    [37]
    J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan. 2016. Superfast divide-and-conquer method and perturbation analysis for structured eigenvalue solutions. SIAM J. Sci. Comput. 38, 3 (2016), A1358--A1382.
    [38]
    P. Willems. 2010. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal SVD. Ph.D. Dissertation. University of Wuppertal.
    [39]
    P. Willems and B. Lang. 2013. A framework for the MR3 algorithm: Theory and implementation. SIAM J. Sci. Comput. 35 (2013), 740--766.
    [40]
    P. Willems, B. Lang, and C. Voemel. 2006. Computing the bidiagonal SVD using multiple relatively robust representations. SIAM. J. Matrix Anal. and Appl. 28 (2006), 907--926.

    Cited By

    View all
    • (2023)High-Performance SVD Partial Spectrum ComputationProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607109(1-12)Online publication date: 12-Nov-2023
    • (2022)A Novel Divisional Bisection Method for the Symmetric Tridiagonal Eigenvalue ProblemMathematics10.3390/math1015278210:15(2782)Online publication date: 5-Aug-2022
    • (2021)Scalability of k-Tridiagonal Matrix Singular Value DecompositionMathematics10.3390/math92331239:23(3123)Online publication date: 3-Dec-2021
    • Show More Cited By

    Index Terms

    1. Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 46, Issue 2
        June 2020
        274 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/3401021
        Issue’s Table of Contents
        Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 19 May 2020
        Accepted: 01 September 2019
        Revised: 01 January 2019
        Received: 01 April 2018
        Published in TOMS Volume 46, Issue 2

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. LAPACK
        2. Singular value decomposition
        3. design
        4. eigenvalues
        5. eigenvectors
        6. implementation
        7. numerical software

        Qualifiers

        • Research-article
        • Research
        • Refereed

        Funding Sources

        • National Science Foundation
        • Fundação para a Ciência e a Tecnologia (FCT) through the sabbatical fellowship

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)406
        • Downloads (Last 6 weeks)42
        Reflects downloads up to 10 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)High-Performance SVD Partial Spectrum ComputationProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607109(1-12)Online publication date: 12-Nov-2023
        • (2022)A Novel Divisional Bisection Method for the Symmetric Tridiagonal Eigenvalue ProblemMathematics10.3390/math1015278210:15(2782)Online publication date: 5-Aug-2022
        • (2021)Scalability of k-Tridiagonal Matrix Singular Value DecompositionMathematics10.3390/math92331239:23(3123)Online publication date: 3-Dec-2021
        • (2021)SpecView: Malware Spectrum Visualization Framework With Singular Spectrum TransformationIEEE Transactions on Information Forensics and Security10.1109/TIFS.2021.312472516(5093-5107)Online publication date: 1-Jan-2021
        • (2021)Matrix Factorization in Recommender Systems: Algorithms, Applications, and Peculiar ChallengesIETE Journal of Research10.1080/03772063.2021.199735769:9(6087-6100)Online publication date: 21-Nov-2021

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Get Access

        Login options

        Full Access

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media