Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3368756.3369091acmotherconferencesArticle/Chapter ViewAbstractPublication PagessmartcityappConference Proceedingsconference-collections
research-article

Deep learning for detecting Android malwares

Published: 02 October 2019 Publication History

Abstract

The revolution and development of malwares over time necessitate an intensive researches on advanced techniques to secure user's personal and critical information, the most challenging task is to build a strong and robust classifier allows to detect different types of malwares and being able to defeat zero-day malware attacks. Machine learning algorithms as SVM (support vector machine), Random Forest and Naïve Bayes are well-known choices for building the malware classifier, even though the deep learning which is a subfield of machine learning, has a portion in classifying android malwares with high precision. In this paper we present a modest study on difference between using both techniques and proposition of an approach based on deep learning technique applied on Apk of android applications belong to a heterogeneous data combined of benign and malware applications of different types.

References

[1]
Y. Bengio, « Learning Deep Architectures for AI », Foundations, vol. 2, p. 1--55, janv. 2009.
[2]
Q. Zhang, L. T. Yang, Z. Chen, et P. Li, « A survey on deep learning for big data », Inf. Fusion, vol. 42, p. 146--157, juill. 2018.
[3]
A. Naway et Y. Li, « A Review on The Use of Deep Learning in Android Malware Detection », p. 15.
[4]
Saleh Albelwi et Ausif Mahmood, « A Framework for Designing the Architectures of Deep Convolutional Neural Networks », Entropy, vol. 19, no 6, p. 242, mai 2017.
[5]
Md. A. Hossain et Md. S. Alam Sajib, « Classification of Image using Convolutional Neural Network (CNN) », Glob. J. Comput. Sci. Technol., p. 13--18, mai 2019.
[6]
Ö. İnik, K. Uyar, et E. Ülker, « Gender Classification with A Novel Convolutional Neural Network (CNN) Model and Comparison with other Machine Learning and Deep Learning CNN Models », p. 8, 2018.
[7]
G. Gelly et J.-L. Gauvain, « Optimization of RNN-Based Speech Activity Detection », IEEEACM Trans. Audio Speech Lang. Process., vol. 26, no 3, p. 646--656, mars 2018.
[8]
A. Graves, A. Mohamed, et G. Hinton, « Speech recognition with deep recurrent neural networks », in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013, p. 6645--6649.
[9]
S. Wang, P. Zhou, W. Chen, J. Jia, et L. Xie, « Exploring RNN-Transducer for Chinese Speech Recognition », ArXiv181105097 Cs Eess, nov. 2018.
[10]
Y. LeCun, Y. Bengio, et G. Hinton, « Deep learning », Nature, vol. 521, p. 436, mai 2015.
[11]
A. Khan, A. Zameer, T. Jamal, et A. Raza, « Deep Belief Networks Based Feature Generation and Regression for Predicting Wind Power », p. 31.
[12]
A. Naway et Y. Li, « Using Deep Neural Network for Android Malware Detection », p. 9.
[13]
X. Su, D. Zhang, W. Li, et K. Zhao, « A Deep Learning Approach to Android Malware Feature Learning and Detection », in 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 2016, p. 244--251.
[14]
P. Zegzhda, D. Zegzhda, E. Pavlenko, et G. Ignatev, « Applying deep learning techniques for Android malware detection », in Proceedings of the 11th International Conference on Security of Information and Networks - SIN '18, Cardiff, United Kingdom, 2018, p. 1--8.
[15]
S. Ilham, G. Abderrahim, et B. A. Abdelhakim, « Permission Based Malware Detection in Android Devices », in Proceedings of the 3rd International Conference on Smart City Applications, New York, NY, USA, 2018, p. 83:1--83:6.
[16]
S. Ilham, G. Abderrahim, et B. A. Abdelhakim, « Clustering Android Applications Using K-Means Algorithm Using Permissions », in Innovations in Smart Cities Applications Edition 2, 2019, p. 678--690.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SCA '19: Proceedings of the 4th International Conference on Smart City Applications
October 2019
788 pages
ISBN:9781450362894
DOI:10.1145/3368756
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 October 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. API calls
  2. Android malware
  3. classification
  4. convolutional neural network
  5. deep learning
  6. machine learning
  7. static analysis

Qualifiers

  • Research-article

Conference

SCA2019

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 80
    Total Downloads
  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media