Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Exploring Complex Brain-Simulation Workloads on Multi-GPU Deployments

Published: 17 December 2019 Publication History

Abstract

In-silico brain simulations are the de-facto tools computational neuroscientists use to understand large-scale and complex brain-function dynamics. Current brain simulators do not scale efficiently enough to large-scale problem sizes (e.g., >100,000 neurons) when simulating biophysically complex neuron models. The goal of this work is to explore the use of true multi-GPU acceleration through NVIDIA’s GPUDirect technology on computationally challenging brain models and to assess their scalability. The brain model used is a state-of-the-art, extended Hodgkin-Huxley, biophysically meaningful, three-compartmental model of the inferior-olivary nucleus. The Hodgkin-Huxley model is the most widely adopted conductance-based neuron representation, and thus the results from simulating this representative workload are relevant for many other brain experiments. Not only the actual network-simulation times but also the network-setup times were taken into account when designing and benchmarking the multi-GPU version, an aspect often ignored in similar previous work. Network sizes varying from 65K to 2M cells, with 10 and 1,000 synapses per neuron were executed on 8, 16, 24, and 32 GPUs. Without loss of generality, simulations were run for 100 ms of biological time. Findings indicate that communication overheads do not dominate overall execution while scaling the network size up is computationally tractable. This scalable design proves that large-network simulations of complex neural models are possible using a multi-GPU design with GPUDirect.

References

[1]
G. Chatzikonstantis, H. Sidiropoulos, C. Strydis, M. Negrello, G. Smaragdos, C. I. De Zeeuw, and D. J. Soudris. 2018. Multinode implementation of an extended Hodgkin-Huxley simulator. Neurocomputing 329 (2018), 370--383.
[2]
Ting-shuo Chou, Hirak J Kashyap, Jinwei Xing, Stanislav Listopad, Emily L Rounds, Michael Beyeler, Nikil Dutt, and Jeffrey L Krichmar. 2018. CARLsim 4 : An open source library for large scale, biologically detailed spiking neural network simulation using heterogeneous clusters. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN’18). 1158--1165.
[3]
Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 1 (1998), 46--55.
[4]
Andrew P. Davison. 2008. PyNN: A common interface for neuronal network simulators. Front. Neuroinform. 2 (Jan. 2008), 1--10.
[5]
Jornt R. de Gruijl, Paolo Bazzigaluppi, Marcel T.G. de Jeu, and Chris I. de Zeeuw. 2012. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput. Biol. 8, 12 (2012), 1--10.
[6]
Chris De Zeeuw, Freek Hoebeek, Laurens Bosman, Martijn Schonewille, Laurens Witter, and Sebastiaan Koekkoek. 2011. Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12 (2011), 327--344.
[7]
Hoang Du Nguyen. 2013. Gpu-based Simulation of Brain Neuron Models. Master’s thesis. Technical University of Delft.
[8]
Wulfram Gerstner and Werner Kistler. 2002. Spiking Neuron Models: An Introduction. Cambridge University Press, New York, NY.
[9]
Marc-Oliver Gewaltig and Markus Diesmann. 2007. NEST (NEural simulation tool). Scholarpedia 2, 4 (2007), 1430.
[10]
Dan Goodman and Romain Brette. 2008. Brian: A simulator for spiking neural networks in Python. Front. Neuroinform. 2 (2008), 5.
[11]
Michael Hines, Sameer Kumar, and Felix Schürmann. 2011. Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci. 5 (2011), 49.
[12]
M. L. Hines and N. T. Carnevale. 1997. The NEURON simulation environment, neural computation. 9, 6 (1997), 1--26.
[13]
Roger V. Hoang, Devyani Tanna, Laurence C. Jayet Bray, Sergiu M. Dascalu, and Frederick C. Harris. 2013. A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Front. Neuroinform. 7 (Oct. 2013), 19.
[14]
Eugene M. Izhikevich. 2004. Izhikevich2004-which model to use for cortical spiking neurons. IEEE Trans. Neural Netw. 15, 5 (2004), 1063--1070.
[15]
James C. Knight and Thomas Nowotny. 2018. GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when simulating a highly-connected cortical model. Front. Neurosci. 12 (2018), 941.
[16]
Jiri Kraus. 2013. An Introduction to CUDA-Aware MPI. Retrieved from https://devblogs.nvidia.com/introduction-cuda-aware-mpi/.
[17]
Pramod Kumbhar, Michael Hines, Jeremy Fouriaux, Aleksandr Ovcharenko, James King, Fabien Delalondre, and Felix Schürmann. 2019. CoreNEURON: An optimized compute engine for the NEURON simulator. Front. Neuroinform. 13 (2019), 63.
[18]
H. Lasn, B. Winblad, and N. Bogdanovic. 2001. The number of neurons in the inferior olivary nucleus in Alzheimer’s disease and normal aging: A stereological study using the optical fractionator. J. Alzheim. Dis. 3, 2 (2001), 159--168.
[19]
Wolfgang Maass. 1996. Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons. In Proceedings of the 9th International Conference on Neural Information Processing Systems (NIPS’96). MIT Press, Cambridge, MA, 211--217. http://dl.acm.org/citation.cfm?id=2998981.2999011
[20]
Wolfgang Maass. 1997. Networks of spiking neurons: The third generation of neural network models. Neur. Netw. 10, 9 (1997), 1659--1671.
[21]
Micheal V. Mascagni. 1989. Numerical methods for neuronal modeling. In Methods in Neuronal Modeling, Christof Koch and Idan Segev (Eds.). MIT Press, Cambridge, MA, 439--484. http://dl.acm.org/citation.cfm?id=94605.94628
[22]
Rene Miedema. 2019. flexHH: A Flexible Hardware Library for Hodgkin-Huxley-based Neural Simulations. Master’s thesis. Technical University of Delft.
[23]
Kirill Minkovich, Corey M. Thibeault, Michael John O’Brien, Aleksey Nogin, Youngkwan Cho, and Narayan Srinivasa. 2014. HRLSim: A high performance spiking neural network simulator for GPGPU clusters. IEEE Trans. Neur. Netw. Learn. Syst. 25, 2 (2014), 316--331.
[24]
Mario Negrello, Pascal Warnaar, Vincenzo Romano, Cullen B. Owens, Sander Lindeman, Elisabetta Iavarone, Jochen K. Spanke, Laurens W. J. Bosman, and Chris I. De Zeeuw. 2019. Quasiperiodic rhythms of the inferior olive. PLOS Comput. Biol. 15, 5 (05 2019), 1--41.
[25]
NVIDIA. 2010. GPUdirect. Retrieved from https://developer.nvidia.com/gpudirect.
[26]
Performance Portability. 2018. Measuring Roofline Quantities on NVIDIA GPUs. Retrieved from http://performanceportability.org/perfport/measurements/gpu/.
[27]
S. Plimpton. 1995. LAMMPS—Fast parallel algorithms for short-range molecular dynamic. J. Comp. Phys. 117, 1 (1995), 1--19.
[28]
Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. 2013. An overview of the Amber biomolecular simulation package. Comput. Molec. Sci. 3, 2 (2013), 198--210. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1121
[29]
Georgios Smaragdos, Georgios Chatzikonstantis, Rahul Kukreja, Harry Sidiropoulos, Dimitrios Rodopoulos, Ioannis Sourdis, Zaid Al-Ars, Christoforos Kachris, Dimitrios Soudris, Chris I. De Zeeuw, and Christos Strydis. 2017. BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations. J. Neur. Eng. 14, 6 (2017), 66008.
[30]
Georgios Smaragdos, Craig Davies, Christos Strydis, Ioannis Sourdis, Catalin Ciobanu, Oskar Mencer, and Chris De Zeeuw. 2014. Real-time olivary neuron simulations on dataflow computing machines. In Supercomputing. Lecture Notes in Computer Science, Vol. 8488.
[31]
Marcel Stimberg, Dan F. M. Goodman, Victor Benichoux, and Romain Brette. 2013. Brian 2 - the second coming: Spiking neural network simulation in Python with code generation. In BMC Neuroscience. BioMed Central, 1471--2202.
[32]
Surfsara. 2016. Cartesius: the Dutch supercomputer. Retrieved from https://userinfo.surfsara.nl/systems/cartesius.
[33]
Mellanox Technologies. 2013. Accelerating High Performance Computing with GPUDirect RDMA. Retrieved October 14, 2019 from http://on-demand.gputechconf.com/gtc/2013/webinar/gtc-express-gpudirect-rdma.pdf.
[34]
M. M. ten Brinke, H. J. Boele, and C. I. De Zeeuw. 2019. Conditioned climbing fiber responses in cerebellar cortex and nuclei. Neurosci. Lett. 688 (2019), 26--36. The Cerebellum in Health and Disease.
[35]
Julien Vitay, Helge Ü. Dinkelbach, and Fred H. Hamker. 2015. ANNarchy: A code generation approach to neural simulations on parallel hardware. Front. Neuroinform. 9 (Jul. 2015), 1--20.
[36]
Nora Vrieler, Sebastian Loyola, Yasmin Yarden-Rabinowitz, Jesse Hoogendorp, Nikolay Medvedev, Tycho M. Hoogland, Chris I. De Zeeuw, Erik De Schutter, Yosef Yarom, Mario Negrello, Ben Torben-Nielsen, and Marylka Yoe Uusisaari. 2019. Variability and directionality of inferior olive neuron dendrites revealed by detailed 3D characterization of an extensive morphological library. Brain Struct. Funct. 224, 4 (01 May 2019), 1677--1695.
[37]
Esin Yavuz, James Turner, and Thomas Nowotny. 2016. GeNN: A code generation framework for accelerated brain simulations. Sci. Rep. 6, 1 (2016), 18854.

Cited By

View all
  • (2024)Vast Parameter Space Exploration of The Virtual Brain: A Modular Framework for Accelerating the Multi-Scale Simulation of Human Brain DynamicsApplied Sciences10.3390/app1405221114:5(2211)Online publication date: 6-Mar-2024
  • (2024)ExaFlexHH: an exascale-ready, flexible multi-FPGA library for biologically plausible brain simulationsFrontiers in Neuroinformatics10.3389/fninf.2024.133087518Online publication date: 12-Apr-2024
  • (2024)HRCM: A Hierarchical Regularizing Mechanism for Sparse and Imbalanced Communication in Whole Human Brain SimulationsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2024.338772035:6(1056-1073)Online publication date: 12-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization  Volume 16, Issue 4
December 2019
572 pages
ISSN:1544-3566
EISSN:1544-3973
DOI:10.1145/3366460
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 December 2019
Accepted: 01 November 2019
Revised: 01 October 2019
Received: 01 May 2019
Published in TACO Volume 16, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Neural networks
  2. multi-GPU
  3. multi-node

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)179
  • Downloads (Last 6 weeks)15
Reflects downloads up to 18 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Vast Parameter Space Exploration of The Virtual Brain: A Modular Framework for Accelerating the Multi-Scale Simulation of Human Brain DynamicsApplied Sciences10.3390/app1405221114:5(2211)Online publication date: 6-Mar-2024
  • (2024)ExaFlexHH: an exascale-ready, flexible multi-FPGA library for biologically plausible brain simulationsFrontiers in Neuroinformatics10.3389/fninf.2024.133087518Online publication date: 12-Apr-2024
  • (2024)HRCM: A Hierarchical Regularizing Mechanism for Sparse and Imbalanced Communication in Whole Human Brain SimulationsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2024.338772035:6(1056-1073)Online publication date: 12-Apr-2024
  • (2024)Tricking AI chips into simulating the human brain: A detailed performance analysisNeurocomputing10.1016/j.neucom.2024.127953598(127953)Online publication date: Sep-2024
  • (2023)Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NESTFrontiers in Neuroinformatics10.3389/fninf.2023.94169617Online publication date: 10-Feb-2023
  • (2023)ENLARGE: An Efficient SNN Simulation Framework on GPU ClustersIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.329182534:9(2529-2540)Online publication date: Sep-2023
  • (2022)Towards the Simulation of a Realistic Large-Scale Spiking Network on a Desktop Multi-GPU SystemBioengineering10.3390/bioengineering91005439:10(543)Online publication date: 11-Oct-2022
  • (2022)EDEN: A High-Performance, General-Purpose, NeuroML-Based Neural SimulatorFrontiers in Neuroinformatics10.3389/fninf.2022.72433616Online publication date: 20-May-2022
  • (2022)Regularizing Sparse and Imbalanced Communications for Voxel-based Brain Simulations on SupercomputersProceedings of the 51st International Conference on Parallel Processing10.1145/3545008.3545019(1-11)Online publication date: 29-Aug-2022
  • (2021)Granular layEr Simulator: Design and Multi-GPU Simulation of the Cerebellar Granular LayerFrontiers in Computational Neuroscience10.3389/fncom.2021.63079515Online publication date: 16-Mar-2021
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media