Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3372224.3419207acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Towards quantum belief propagation for LDPC decoding in wireless networks

Published: 18 September 2020 Publication History

Abstract

We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10--8 in 20 μs and a 1,500 byte frame error rate of 10--6 in 50 μs at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μs to achieve a 1,500 byte 99.99% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10--8 and a frame error rate of 10--6 at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized (e.g., Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations.

References

[1]
Steven H Adachi and Maxwell P Henderson. 2015. Application of quantum annealing to training of deep neural networks.
[2]
Alexandru Amaricai and Oana Boncalo. 2017. Design Trade-Offs for FPGA Implementation of LDPC Decoders. In Field, George Dekoulis (Ed.). IntechOpen, Rijeka, Chapter 5, 105.
[3]
Mohammad H Amin. 2015. Searching for quantum speedup in quasistatic quantum annealers. Physical Review A 92, 5 (2015), 052323.
[4]
Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and Helmut G Katzgraber. 2019. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Frontiers in Physics 7 (2019), 48.
[5]
Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. 2019. Quantum-inspired algorithms in practice. arXiv:arXiv:1905.10415
[6]
C. Berrou, A. Glavieux, and P. Thitimajshima. 1993. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In Proceedings of ICC '93 - IEEE International Conference on Communications, Vol. 2. IEEE, Geneva, Switzerland, 1064--1070.
[7]
Zhengbing Bian, Fabian Chudak, Robert Israel, Brad Lackey, William G Macready, and Aidan Roy. 2014. Discrete optimization using quantum annealing on sparse Ising models. Frontiers in Physics 2 (2014), 56.
[8]
Zhengbing Bian, Fabian Chudak, Robert Brian Israel, Brad Lackey, William G Macready, and Aidan Roy. 2016. Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Frontiers in ICT 3 (2016), 14.
[9]
Zhengbing Bian, Fabian Chudak, William G Macready, and Geordie Rose. 2010. The Ising model: teaching an old problem new tricks.
[10]
Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker, Daniel A Lidar, John M Martinis, and Matthias Troyer. 2014. Evidence for quantum annealing with more than one hundred qubits. Nature physics 10, 3 (2014), 218--224.
[11]
CCSDS Blue Book. 2020. Radio Frequency and Modulation Systems-Part 1 Earth Stations and Spacecraft.
[12]
CCSDS Orange Book. 2014. Erasure Correcting Codes for Use in Near-Earth and Deep-Space Communications.
[13]
Tomas Boothby, Andrew D King, and Aidan Roy. 2016. Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Information Processing 15, 1 (2016), 495--508.
[14]
Jun Cai, William G Macready, and Aidan Roy. 2014. A practical heuristic for finding graph minors.
[15]
A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann. 2015. Cloud RAN for Mobile Networks---A Technology Overview. IEEE Communications Surveys Tutorials 17, 1 (2015), 405--426.
[16]
Shashi Kiran Chilappagari, Dung Viet Nguyen, Bane Vasic, and Michael W Marcellin. 2008. Girth of the Tanner graph and error correction capability of LDPC codes. In Communication, Control, and Computing, 2008 46th Annual Allerton Conference on. IEEE, IL, USA, 1238--1245.
[17]
D-Wave Hybrid Solver Service. Website.
[18]
D-Wave Next-Generation QPU Topology. Website.
[19]
D-Wave Quantum Processing Unit. Website.
[20]
D-Wave Systems Technology Information. Website.
[21]
D-Wave qbsolv embedding tool. Website.
[22]
D-Wave Virtual Full-Yield Chimera Solver. Website.
[23]
ETSI. 2009. ETSI Standard EN 302 307: Digital Video Broadcasting; Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2).
[24]
TS ETSI. 2018. 138 212 V15. 2.0 Technical Specification-5G, NR, Multiplexing and channel coding.
[25]
Robert Gallager. 1962. Low-density parity-check codes. IRE Transactions on Information Theory 8, 1 (1962), 21--28.
[26]
Peter Hailes, Lei Xu, Robert G Maunder, Bashir M Al-Hashimi, and Lajos Hanzo. 2016. A survey of FPGA-based LDPC decoders. IEEE Communications Surveys & Tutorials 18, 2 (2016), 1098--1122.
[27]
Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2011. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM Computer Communication Review 41, 1 (2011), 53--53.
[28]
Kuk-Hyun Han and Jong-Hwan Kim. 2002. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE transactions on evolutionary computation 6, 6 (2002), 580--593.
[29]
Dale E Hocevar. 2004. A reduced complexity decoder architecture via layered decoding of LDPC codes. In IEEE Workshop on Signal Processing Systems. IEEE, TX, USA, 107--112.
[30]
IEEE. 2012. IEEE Standard 802.11: Wireless LAN Medium Access and Physical Layer Specifications.
[31]
IEEE. 2012. IEEE Standard 802.16: Air Interface for Broadband Wireless Access Systems.
[32]
IEEE. 2012. IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
[33]
Hirotaka Irie, Haozhao Liang, Shinya Gongyo, Tetsuo Hatsuda, et al. 2020. Hybrid Quantum Annealing via Molecular Dynamics.
[34]
Hiroshi Ishikawa. 2009. Higher-order clique reduction in binary graph cut. In IEEE CVPR. IEEE, FL, USA, 2993--3000.
[35]
Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, R Harris, Andrew J Berkley, Jan Johansson, Paul Bunyk, et al. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194.
[36]
Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Physical Review E 58, 5 (1998), 5355.
[37]
Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. 2018. Parallel Programming for FPGAs. arXiv:1805.03648 [cs.AR]
[38]
Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer. 2006. Feedback-optimized parallel tempering Monte Carlo. Journal of Statistical Mechanics: Theory and Experiment 2006, 03 (2006), P03018.
[39]
Minsung Kim, Davide Venturelli, and Kyle Jamieson. 2019. Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks. In Proceedings of the ACM Special Interest Group on Data Communication (Beijing, China) (SIGCOMM '19). Association for Computing Machinery, New York, NY, USA, 241--255.
[40]
Andrew D King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, et al. 2018. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 7719 (2018), 456.
[41]
John FC Kingman. 1975. Random discrete distributions. Journal of the Royal Statistical Society: Series B (Methodological) 37, 1 (1975), 1--15.
[42]
P. J. M. Laarhoven and E. H. L. Aarts. 1987. Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, USA.
[43]
Brad Lackey. 2018. A belief propagation algorithm based on domain decomposition.
[44]
Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. K. Sabhikhi. 2010. Wireless network cloud: Architecture and system requirements. IBM Journal of Research and Development 54, 1 (2010), 4:1--4:12.
[45]
Long Term Price Trends of Computers and Peripherals: U.S. Bureau of Labor Statistics. Website.
[46]
Jin Lu and Josée MF Moura. 2006. Structured LDPC codes for high-density recording: large girth and low error floor. IEEE transactions on magnetics 42, 2 (2006), 208--213.
[47]
Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in Physics 2 (2014), 5.
[48]
David JC MacKay. 1999. Good error-correcting codes based on very sparse matrices. IEEE Trans. on Information Theory 45, 2 (1999), 399--431.
[49]
Grigorii A Margulis. 1982. Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2, 1 (1982), 71--78.
[50]
S. Matsubara, M. Takatsu, T. Miyazawa, T. Shibasaki, Y. Watanabe, K. Takemoto, and H. Tamura. 2020. Digital Annealer for High-Speed Solving of Combinatorial optimization Problems and Its Applications. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, Beijing, China, 667--672.
[51]
Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. 2016. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics 18, 2 (2016), 023023.
[52]
C C McGeoch. 2014. Adiabatic quantum computation and quantum annealing: Theory and practice. Synthesis Lectures on Quantum Computing 5, 2 (2014), 1--93.
[53]
Catherine C. McGeoch and Cong Wang. 2013. Experimental Evaluation of an Adiabiatic Quantum System for Combinatorial Optimization. In Proceedings of the ACM International Conference on Computing Frontiers (Ischia, Italy) (CF '13). Association for Computing Machinery, New York, NY, USA, Article 23, 11 pages.
[54]
Oscar Montiel, Yoshio Rubio, Cynthia Olvera, and Ajelet Rivera. 2019. Quantum-Inspired Acromyrmex Evolutionary Algorithm. Scientific reports 9, 1 (2019), 1--10.
[55]
Alberto Morello and Vittoria Mignone. 2006. DVB-S2: The second generation standard for satellite broad-band services. Proc. of the IEEE 94, 1 (2006), 210--227.
[56]
Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria Spiropulu. 2017. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 7676 (2017), 375--379.
[57]
A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang. 2002. Stopping sets and the girth of Tanner graphs. In Proceedings IEEE International Symposium on Information Theory,. IEEE, Lausanne, Switzerland, 2.
[58]
Alejandro Perdomo-Ortiz, Joseph Fluegemann, Sriram Narasimhan, Rupak Biswas, and Vadim N Smelyanskiy. 2015. A quantum annealing approach for fault detection and diagnosis of graph-based systems. The European Physical Journal Special Topics 224, 1 (2015), 131--148.
[59]
John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (2018), 79.
[60]
Claude Elwood Shannon. 1948. A mathematical theory of communication. Bell Systems Technical Journal 27, 3 (1948), 379--423.
[61]
Michael Streif, Florian Neukart, and Martin Leib. 2019. Solving Quantum Chemistry Problems with a D-Wave Quantum Annealer. In Quantum Technology and Optimization Problems, Sebastian Feld and Claudia Linnhoff-Popien (Eds.). Springer International Publishing, Cham, 111--122.
[62]
Y. Sun, M. Karkooti, and J. R. Cavallaro. 2006. High Throughput, Parallel, Scalable LDPC Encoder/Decoder Architecture for OFDM Systems. In 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. IEEE, TX, USA, 39--42.
[63]
Karthikeyan Sundaresan. 2013. Cloud-Driven Architectures for next Generation Small Cell Networks. In Proceedings of the Eighth ACM International Workshop on Mobility in the Evolving Internet Architecture (Miami, Florida, USA) (MobiArch '13). Association for Computing Machinery, New York, NY, USA, 3--4.
[64]
Karthikeyan Sundaresan, Mustafa Y. Arslan, Shailendra Singh, Sampath Rangarajan, and Srikanth V. Krishnamurthy. 2016. FluidNet: A Flexible Cloud-based Radio Access Network for Small Cells. IEEE/ACM Trans. on Networking 24, 2 (April 2016), 915--928.
[65]
Karthikeyan Sundaresan, Mustafa Y. Arslan, Shailendra Singh, Sampath Rangarajan, and Srikanth V. Krishnamurthy. 2016. FluidNet: A Flexible Cloud-Based Radio Access Network for Small Cells. IEEE/ACM Trans. Netw. 24, 2 (April 2016), 915--928.
[66]
Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K. Fahrmann, Barthelemy Meynard-Piganeau, and Jens Eisert. 2019. Stochastic gradient descent for hybrid quantum-classical optimization. arXiv:1910.01155 [quant-ph]
[67]
R Tanner. 1981. A recursive approach to low complexity codes. IEEE Transactions on information theory 27, 5 (1981), 533--547.
[68]
J. Teubner, R. Mueller, and G. Alonso. 2010. FPGA acceleration for the frequent item problem. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, CA, USA, 669--680.
[69]
Tony T Tran, Minh Do, Eleanor G Rieffel, Jeremy Frank, Zhihui Wang, Bryan O'Gorman, Davide Venturelli, and J Christopher Beck. 2016. A hybrid quantum-classical approach to solving scheduling problems. In Ninth annual symposium on combinatorial search. AAAI, NY, USA, 98--106.
[70]
Davide Venturelli, Salvatore Mandrà, Sergey Knysh, Bryan O'Gorman, Rupak Biswas, and Vadim Smelyanskiy. 2015. Quantum Optimization of Fully Connected Spin Glasses. Phys. Rev. X 5 (Sep 2015), 031040. Issue 3.
[71]
Davide Venturelli, Dominic J. J. Marchand, and Galo Rojo. 2015. Quantum Annealing Implementation of Job-Shop Scheduling. arXiv:1506.08479 [quant-ph]
[72]
Chi Wang, Huo Chen, and Edmond Jonckheere. 2016. Quantum versus simulated annealing in wireless interference network optimization. Scientific reports 6 (2016), 25797.
[73]
Xilinx UltraScale Architecture User Guide. Website.
[74]
Xilinx Vivado Design Suite User Guide. Website.
[75]
Raman Yazdani and Masoud Ardakani. 2011. Efficient LLR calculation for non-binary modulations over fading channels. IEEE transactions on communications 59, 5 (2011), 1236--1241.
[76]
Jianguang Zhao, Farhad Zarkeshvari, and Amir H Banihashemi. 2005. On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (LDPC) codes. IEEE transactions on communications 53, 4 (2005), 549--554.
[77]
Victor Vasilievich Zyablov and Mark Semenovich Pinsker. 1975. Estimation of the error-correction complexity for Gallager low-density codes. Problemy Peredachi Informatsii 11, 1 (1975), 23--36.

Cited By

View all
  • (2024)A Low-Density Parity-Check Coding Scheme for LoRa NetworkingACM Transactions on Sensor Networks10.1145/366592820:4(1-29)Online publication date: 8-Jul-2024
  • (2024)A Quantum Annealer-Enabled Decoder and Hardware Topology for NextG Wireless Polar CodesIEEE Transactions on Wireless Communications10.1109/TWC.2023.331120423:4(3780-3794)Online publication date: Apr-2024
  • (2024)Decoding of Polar Codes Using Quadratic Unconstrained Binary OptimizationIEEE Journal on Selected Areas in Communications10.1109/JSAC.2024.343157942:11(3204-3216)Online publication date: Nov-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MobiCom '20: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking
April 2020
621 pages
ISBN:9781450370851
DOI:10.1145/3372224
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 September 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. LDPC codes
  2. belief propagation
  3. channel coding
  4. embedding
  5. quantum annealing
  6. quantum computation
  7. wireless networks

Qualifiers

  • Research-article

Funding Sources

  • National Science Foundation (NSF)

Conference

MobiCom '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 440 of 2,972 submissions, 15%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)143
  • Downloads (Last 6 weeks)12
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Low-Density Parity-Check Coding Scheme for LoRa NetworkingACM Transactions on Sensor Networks10.1145/366592820:4(1-29)Online publication date: 8-Jul-2024
  • (2024)A Quantum Annealer-Enabled Decoder and Hardware Topology for NextG Wireless Polar CodesIEEE Transactions on Wireless Communications10.1109/TWC.2023.331120423:4(3780-3794)Online publication date: Apr-2024
  • (2024)Decoding of Polar Codes Using Quadratic Unconstrained Binary OptimizationIEEE Journal on Selected Areas in Communications10.1109/JSAC.2024.343157942:11(3204-3216)Online publication date: Nov-2024
  • (2024)Quantum Annealing with Post-processing of Maximum Likelihood for LDPC Decoding2024 5th Information Communication Technologies Conference (ICTC)10.1109/ICTC61510.2024.10601825(168-172)Online publication date: 10-May-2024
  • (2023)Quantum Assisted Architectures for Wireless Systems, the Case of Quantum 6GProceedings of the 7th International Conference on Future Networks and Distributed Systems10.1145/3644713.3644806(618-625)Online publication date: 21-Dec-2023
  • (2023)A Cost and Power Feasibility Analysis of Quantum Annealing for NextG Cellular Wireless NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2023.33264694(1-17)Online publication date: 2023
  • (2023)xSA: A Binary Cross-Entropy Simulated Annealing Polar Decoder2023 12th International Symposium on Topics in Coding (ISTC)10.1109/ISTC57237.2023.10273491(1-5)Online publication date: 4-Sep-2023
  • (2023)On Quantum-Assisted LDPC Decoding Augmented with Classical Post-processingParallel Processing and Applied Mathematics10.1007/978-3-031-30445-3_13(153-164)Online publication date: 27-Apr-2023
  • (2022)Quantum message-passing algorithm for optimal and efficient decodingQuantum10.22331/q-2022-08-23-7846(784)Online publication date: 23-Aug-2022
  • (2022)LLDPCProceedings of the 20th ACM Conference on Embedded Networked Sensor Systems10.1145/3560905.3568547(193-206)Online publication date: 6-Nov-2022
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media