Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3379337.3415856acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

MonoEye: Multimodal Human Motion Capture System Using A Single Ultra-Wide Fisheye Camera

Published: 20 October 2020 Publication History

Abstract

We present MonoEye, a multimodal human motion capture system using a single RGB camera with an ultra-wide fisheye lens, mounted on the user's chest. Existing optical motion capture systems use multiple cameras, which are synchronized and require camera calibration. These systems also have usability constraints that limit the user's movement and operating space. Since the MonoEye system is based on a wearable single RGB camera, the wearer's 3D body pose can be captured without space and environment limitations. The body pose, captured with our system, is aware of the camera orientation and therefore it is possible to recognize various motions that existing egocentric motion capture systems cannot recognize. Furthermore, the proposed system captures not only the wearer's body motion but also their viewport using the head pose estimation and an ultra-wide image. To implement robust multimodal motion capture, we design three deep neural networks: BodyPoseNet, HeadPoseNet, and CameraPoseNet, that estimate 3D body pose, head pose, and camera pose in real-time, respectively. We train these networks with our new extensive synthetic dataset providing 680K frames of renderings of people with a wide range of body shapes, clothing, actions, backgrounds, and lighting conditions. To demonstrate the interactive potential of the MonoEye system, we present several application examples from common body gestural to context-aware interactions.

Supplementary Material

VTT File (ufp5705pv.vtt)
VTT File (ufp5705vf.vtt)
VTT File (3379337.3415856.vtt)
SRT File (ufp5705pvc.srt)
Preview video captions
SRT File (ufp5705vfc.srt)
Video figure captions
MP4 File (ufp5705pv.mp4)
Preview video
MP4 File (ufp5705vf.mp4)
Video figure
MP4 File (3379337.3415856.mp4)
Presentation Video

References

[1]
2001. Carnegie Mellon University - Carnegie Mellon University Graphics Lab - motion capture library. (2001). http://mocap.cs.cmu.edu/
[2]
Karan Ahuja, Chris Harrison, Mayank Goel, and Robert Xiao. 2019. MeCap: Whole-Body Digitization for Low-Cost VR/AR Headsets. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19). Association for Computing Machinery, New York, NY, USA, 453--462. http://dx.doi.org/10.1145/3332165.3347889
[3]
Sikandar Amin, Mykhaylo Andriluka, Marcus Rohrbach, and Bernt Schiele. 2013. Multi-view Pictorial Structures for 3D Human Pose Estimation. In Procedings of the British Machine Vision Conference 2013. British Machine Vision Association. http://dx.doi.org/10.5244/c.27.45
[4]
Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2014. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. http://dx.doi.org/10.1109/cvpr.2014.471
[5]
Andreas Baak, Meinard Muller, Gaurav Bharaj, Hans-Peter Seidel, and Christian Theobalt. 2011. A data-driven approach for real-time full body pose reconstruction from a depth camera. In 2011 International Conference on Computer Vision. IEEE. http://dx.doi.org/10.1109/iccv.2011.6126356
[6]
C. Bregler and J. Malik. Tracking people with twists and exponential maps. In Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231). IEEE Comput. Soc. http://dx.doi.org/10.1109/cvpr.1998.698581
[7]
Adrian Bulat and Georgios Tzimiropoulos. 2017. How Far are We from Solving the 2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D Facial Landmarks). In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE. http://dx.doi.org/10.1109/iccv.2017.116
[8]
Magnus Burenius, Josephine Sullivan, and Stefan Carlsson. 2013. 3D Pictorial Structures for Multiple View Articulated Pose Estimation. In 2013 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. http://dx.doi.org/10.1109/cvpr.2013.464
[9]
Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. 2012. Face alignment by Explicit Shape Regression. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. http://dx.doi.org/10.1109/cvpr.2012.6248015
[10]
Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012. 1 Filter: A Simple Speed-Based Low-Pass Filter for Noisy Input in Interactive Systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). Association for Computing Machinery, New York, NY, USA, 2527--2530. http://dx.doi.org/10.1145/2207676.2208639
[11]
Y. Cha, T. Price, Z. Wei, X. Lu, N. Rewkowski, R. Chabra, Z. Qin, H. Kim, Z. Su, Y. Liu, A. Ilie, A. State, Z. Xu, J. Frahm, and H. Fuchs. 2018. Towards Fully Mobile 3D Face, Body, and Environment Capture Using Only Head-worn Cameras. IEEE Transactions on Visualization and Computer Graphics 24, 11 (2018), 2993--3004.
[12]
Liwei Chan, Chi-Hao Hsieh, Yi-Ling Chen, Shuo Yang, Da-Yuan Huang, Rong-Hao Liang, and Bing-Yu Chen. 2015. Cyclops: Wearable and Single-Piece Full-Body Gesture Input Devices. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, New York, NY, USA, 3001--3009.
[13]
Feng-Ju Chang, Anh Tuan Tran, Tal Hassner, Iacopo Masi, Ram Nevatia, and Gerard Medioni. 2017. FacePoseNet: Making a Case for Landmark-Free Face Alignment. In 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). IEEE. http://dx.doi.org/10.1109/iccvw.2017.188
[14]
Yu Chen, Chunhua Shen, Xiu-Shen Wei, Lingqiao Liu, and Jian Yang. Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation. In IEEE ICCV 2017.
[15]
Chia-Jung Chou, Jui-Ting Chien, and Hwann-Tzong Chen. Self Adversarial Training for Human Pose Estimation. In APSIPA ASC 2018. IEEE. http://dx.doi.org/10.23919/apsipa.2018.8659538
[16]
Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L. Yuille, and Xiaogang Wang. Multi-context Attention for Human Pose Estimation. In IEEE CVPR 2017. http://dx.doi.org/10.1109/cvpr.2017.601
[17]
Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel, and Sebastian Thrun. 2008. Performance capture from sparse multi-view video. ACM Transactions on Graphics 27, 3 (aug 2008), 1--10. http://dx.doi.org/10.1145/1360612.1360697
[18]
Daniel F. Dementhon and Larry S. Davis. 1995. Model-based object pose in 25 lines of code. International Journal of Computer Vision 15, 1--2 (jun 1995), 123--141. http://dx.doi.org/10.1007/bf01450852
[19]
A. Elhayek, E. de Aguiar, A. Jain, J. Tompson, L. Pishchulin, M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt. 2015. Efficient ConvNet-based marker-less motion capture in general scenes with a low number of cameras. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2015.7299005
[20]
Juergen Gall, Bodo Rosenhahn, Thomas Brox, and Hans-Peter Seidel. 2008. Optimization and Filtering for Human Motion Capture. International Journal of Computer Vision 87, 1--2 (nov 2008), 75--92. http://dx.doi.org/10.1007/s11263-008-0173--1
[21]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2016.90
[22]
Keita Higuchi, Ryo Yonetani, and Yoichi Sato. 2017. EgoScanning: Quickly Scanning First-Person Videos with Egocentric Elastic Timelines. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). Association for Computing Machinery, New York, NY, USA, 6536--6546. http://dx.doi.org/10.1145/3025453.3025821
[23]
Michael B. Holte, Cuong Tran, Mohan M. Trivedi, and Thomas B. Moeslund. 2012. Human Pose Estimation and Activity Recognition From Multi-View Videos: Comparative Explorations of Recent Developments. IEEE Journal of Selected Topics in Signal Processing 6, 5 (sep 2012), 538--552. http://dx.doi.org/10.1109/jstsp.2012.2196975
[24]
Jason Hong. 2013. Considering Privacy Issues in the Context of Google Glass. Commun. ACM 56, 11 (Nov. 2013), 10--11. http://dx.doi.org/10.1145/2524713.2524717
[25]
Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. 2014. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 7 (jul 2014), 1325--1339.
[26]
Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury Malkov. Learnable Triangulation of Human Pose. In IEEE ICCV 2019.
[27]
Hao Jiang and Kristen Grauman. 2017. Seeing Invisible Poses: Estimating 3D Body Pose from Egocentric Video. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2017.373
[28]
Sam Johnson and Mark Everingham. 2010. Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation. In Procedings of the British Machine Vision Conference 2010. British Machine Vision Association. http://dx.doi.org/10.5244/c.24.12
[29]
Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh. 2015. Panoptic Studio: A Massively Multiview System for Social Motion Capture. In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://dx.doi.org/10.1109/iccv.2015.381
[30]
Vahid Kazemi and Josephine Sullivan. 2014. One millisecond face alignment with an ensemble of regression trees. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. http://dx.doi.org/10.1109/cvpr.2014.241
[31]
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7--9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980
[32]
Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-Supervised Learning of 3D Human Pose using Multi-view Geometry. In IEEE CVPR 2019.
[33]
Amit Kumar, Azadeh Alavi, and Rama Chellappa. 2017. KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors. In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE. http://dx.doi.org/10.1109/fg.2017.149
[34]
Sijin Li and Antoni B. Chan. 3D Human Pose Estimation from Monocular Images with Deep Convolutional Neural Network. In ACCV 2014. 332--347. http://dx.doi.org/10.1007/978--3--319--16808--1_23
[35]
Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. 34, 6, Article Article 248 (Oct. 2015), 16 pages. http://dx.doi.org/10.1145/2816795.2818013
[36]
Diogo C. Luvizon, David Picard, and Hedi Tabia. 2D/3D Pose Estimation and Action Recognition Using Multitask Deep Learning. In IEEE CVPR 2018. http://dx.doi.org/10.1109/cvpr.2018.00539
[37]
Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities improve neural network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and Language Processing.
[38]
Julieta Martinez, Rayat Hossain, Javier Romero, and James J. Little. A Simple Yet Effective Baseline for 3d Human Pose Estimation. In IEEE ICCV 2017. http://dx.doi.org/10.1109/iccv.2017.288
[39]
Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. 2017a. Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision. In 3D Vision (3DV), 2017 Fifth International Conference on. IEEE. http://dx.doi.org/10.1109/3dv.2017.00064
[40]
Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. 2017b. VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera. ACM Transactions on Graphics 36, 4 (July 2017).
[41]
Thomas B. Moeslund, Adrian Hilton, Volker Krger, and Leonid Sigal. 2013. Visual Analysis of Humans: Looking at People. Springer Publishing Company, Incorporated.
[42]
Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked Hourglass Networks for Human Pose Estimation. In ECCV 2016. 483--499. http://dx.doi.org/10.1007/978--3--319--46484--8_29
[43]
Evonne Ng, Donglai Xiang, Hanbyul Joo, and Kristen Grauman. 2020. You2Me: Inferring Body Pose in Egocentric Video via First and Second Person Interactions. CVPR (2020).
[44]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035.
[45]
Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis. Ordinal Depth Supervision for 3D Human Pose Estimation. In IEEE CVPR 2018. http://dx.doi.org/10.1109/cvpr.2018.00763
[46]
Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpanis, and Kostas Daniilidis. Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose. In IEEE CVPR 2017. http://dx.doi.org/10.1109/cvpr.2017.139
[47]
Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpanis, and Kostas Daniilidis. 2017. Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2017.138
[48]
Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In IEEE CVPR 2019.
[49]
Rajeev Ranjan, Vishal M. Patel, and Rama Chellappa. 2019. HyperFace: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 1 (jan 2019), 121--135. http://dx.doi.org/10.1109/tpami.2017.2781233
[50]
Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad Shafiei, Hans-Peter Seidel, Bernt Schiele, and Christian Theobalt. 2016. EgoCap. ACM Transactions on Graphics 35, 6 (nov 2016), 1--11. http://dx.doi.org/10.1145/2980179.2980235
[51]
Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2015. A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation. In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://dx.doi.org/10.1109/iccv.2015.94
[52]
Nadia Robertini, Dan Casas, Helge Rhodin, Hans-Peter Seidel, and Christian Theobalt. 2016. Model-Based Outdoor Performance Capture. In 2016 Fourth International Conference on 3D Vision (3DV). IEEE. http://dx.doi.org/10.1109/3dv.2016.25
[53]
Gregory Rogez, James S. Supancic, and Deva Ramanan. 2015. First-person pose recognition using egocentric workspaces. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2015.7299061
[54]
Nataniel Ruiz, Eunji Chong, and James M. Rehg. 2018. Fine-Grained Head Pose Estimation Without Keypoints. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE. http://dx.doi.org/10.1109/cvprw.2018.00281
[55]
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211--252. http://dx.doi.org/10.1007/s11263-015-0816-y
[56]
Takaaki Shiratori, Hyun Soo Park, Leonid Sigal, Yaser Sheikh, and Jessica K. Hodgins. 2011. Motion capture from body-mounted cameras. In ACM SIGGRAPH 2011 papers on - SIGGRAPH textquotesingle11. ACM Press. http://dx.doi.org/10.1145/1964921.1964926
[57]
Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, and Andrew Blake. 2011. Real-time human pose recognition in parts from single depth images. In CVPR 2011. IEEE. http://dx.doi.org/10.1109/cvpr.2011.5995316
[58]
Leonid Sigal, Alexandru O. Balan, and Michael J. Black. 2009. HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion. International Journal of Computer Vision 87, 1--2 (aug 2009), 4--27. http://dx.doi.org/10.1007/s11263-009-0273--6
[59]
Leonid Sigal, Michael Isard, Horst Haussecker, and Michael J. Black. 2011. Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation. International Journal of Computer Vision 98, 1 (sep 2011), 15--48. http://dx.doi.org/10.1007/s11263-011-0493--4
[60]
Carsten Stoll, Nils Hasler, Juergen Gall, Hans-Peter Seidel, and Christian Theobalt. 2011. Fast articulated motion tracking using a sums of Gaussians body model. In 2011 International Conference on Computer Vision. IEEE. http://dx.doi.org/10.1109/iccv.2011.6126338
[61]
Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep High-Resolution Representation Learning for Human Pose Estimation. In IEEE CVPR 2019.
[62]
Bugra Tekin, Pablo Marquez-Neila, Mathieu Salzmann, and Pascal Fua. Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation. In IEEE ICCV 2017. http://dx.doi.org/10.1109/iccv.2017.425
[63]
Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. 2019. xR-EgoPose: Egocentric 3D Human Pose From an HMD Camera. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. http://dx.doi.org/10.1109/iccv.2019.00782
[64]
Raquel Urtasun, David J. Fleet, and Pascal Fua. 2006. Temporal motion models for monocular and multiview 3D human body tracking. Computer Vision and Image Understanding 104, 2--3 (nov 2006), 157--177. http://dx.doi.org/10.1016/j.cviu.2006.08.006
[65]
Gul Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, and Cordelia Schmid. 2017. Learning from Synthetic Humans. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2017.492
[66]
Xiaolin Wei, Peizhao Zhang, and Jinxiang Chai. 2012. Accurate realtime full-body motion capture using a single depth camera. ACM Transactions on Graphics 31, 6 (nov 2012), 1--12. http://dx.doi.org/10.1145/2366145.2366207
[67]
Jianxiong Xiao, K. A. Ehinger, A. Oliva, and A. Torralba. 2012. Recognizing scene viewpoint using panoramic place representation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. http://dx.doi.org/10.1109/cvpr.2012.6247991
[68]
Xuehan Xiong and Fernando De la Torre. 2015. Global supervised descent method. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2015.7298882
[69]
Weipeng Xu, Avishek Chatterjee, Michael Zollhofer, Helge Rhodin, Pascal Fua, Hans-Peter Seidel, and Christian Theobalt. 2019. Mo2Cap2 : Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera. IEEE Transactions on Visualization and Computer Graphics 25, 5 (may 2019), 2093--2101. http://dx.doi.org/10.1109/tvcg.2019.2898650
[70]
Tsun-Yi Yang, Yi-Ting Chen, Yen-Yu Lin, and Yung-Yu Chuang. 2019. FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation From a Single Image. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2019.00118
[71]
Haruka Yonemoto, Kazuhiko Murasaki, Tatsuya Osawa, Kyoko Sudo, Jun Shimamura, and Yukinobu Taniguchi. 2015. Egocentric articulated pose tracking for action recognition. In 2015 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE. http://dx.doi.org/10.1109/mva.2015.7153142
[72]
Ye Yuan and Kris Kitani. 2018. 3D Ego-Pose Estimation via Imitation Learning. In Computer Vision textendash ECCV 2018. Springer International Publishing, 763--778. http://dx.doi.org/10.1007/978--3-030-01270-0_45
[73]
Ye Yuan and Kris Kitani. 2019. Ego-Pose Estimation and Forecasting As Real-Time PD Control. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. http://dx.doi.org/10.1109/iccv.2019.01018
[74]
Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z. Li. 2015. Face Alignment Across Large Poses: A 3D Solution. CoRR abs/1511.07212 (2015). http://arxiv.org/abs/1511.07212
[75]
Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z. Li. 2016. Face Alignment Across Large Poses: A 3D Solution. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. http://dx.doi.org/10.1109/cvpr.2016.23

Cited By

View all
  • (2024)Motion Capture Technology in Sports Scenarios: A SurveySensors10.3390/s2409294724:9(2947)Online publication date: 6-May-2024
  • (2024)SolePoser: Full Body Pose Estimation using a Single Pair of Insole SensorProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676418(1-9)Online publication date: 13-Oct-2024
  • (2024)Gait Gestures: Examining Stride and Foot Strike Variation as an Input Method While WalkingProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676342(1-16)Online publication date: 13-Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
UIST '20: Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology
October 2020
1297 pages
ISBN:9781450375146
DOI:10.1145/3379337
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 October 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computer vision
  2. egocentric camera
  3. fisheye camera
  4. gaze direction
  5. head pose estimation
  6. mobile motion capture

Qualifiers

  • Research-article

Funding Sources

Conference

UIST '20

Acceptance Rates

Overall Acceptance Rate 561 of 2,567 submissions, 22%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)113
  • Downloads (Last 6 weeks)19
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Motion Capture Technology in Sports Scenarios: A SurveySensors10.3390/s2409294724:9(2947)Online publication date: 6-May-2024
  • (2024)SolePoser: Full Body Pose Estimation using a Single Pair of Insole SensorProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676418(1-9)Online publication date: 13-Oct-2024
  • (2024)Gait Gestures: Examining Stride and Foot Strike Variation as an Input Method While WalkingProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676342(1-16)Online publication date: 13-Oct-2024
  • (2024)BodyTouchProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314267:4(1-22)Online publication date: 12-Jan-2024
  • (2024)Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.01834(19383-19400)Online publication date: 16-Jun-2024
  • (2023)Egocentric Human Pose Estimation using Head-mounted mmWave RadarProceedings of the 21st ACM Conference on Embedded Networked Sensor Systems10.1145/3625687.3625799(431-444)Online publication date: 12-Nov-2023
  • (2023)ModBand: Design of a Modular Headband for Multimodal Data Collection and InferenceAdjunct Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586182.3616682(1-3)Online publication date: 29-Oct-2023
  • (2023)D-Touch: Recognizing and Predicting Fine-grained Hand-face Touching Activities Using a Neck-mounted WearableProceedings of the 28th International Conference on Intelligent User Interfaces10.1145/3581641.3584063(569-583)Online publication date: 27-Mar-2023
  • (2023)HOOV: Hand Out-Of-View Tracking for Proprioceptive Interaction using Inertial SensingProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581468(1-16)Online publication date: 19-Apr-2023
  • (2023)I Need a Third Arm! Eliciting Body-based Interactions with a Wearable Robotic ArmProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581184(1-15)Online publication date: 19-Apr-2023
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media