Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3381755.3381758acmotherconferencesArticle/Chapter ViewAbstractPublication PagesniceConference Proceedingsconference-collections
research-article

Evolutionary Optimization for Neuromorphic Systems

Published: 18 June 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Designing and training an appropriate spiking neural network for neuromorphic deployment remains an open challenge in neuromorphic computing. In 2016, we introduced an approach for utilizing evolutionary optimization to address this challenge called Evolutionary Optimization for Neuromorphic Systems (EONS). In this work, we present an improvement to this approach that enables rapid prototyping of new applications of spiking neural networks in neuromorphic systems. We discuss the overall EONS framework and its improvements over the previous implementation. We present several case studies of how EONS can be used, including to train spiking neural networks for classification and control tasks, to train under hardware constraints, to evolve a reservoir for a liquid state machine, and to evolve smaller networks using multi-objective optimization.

    References

    [1]
    S.M. Bohte, J.N. Kok, and J.A. La Poutré. 2000. SpikeProp: backpropagation for networks of spiking neurons. In ESANN. 419--424.
    [2]
    G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
    [3]
    S. Buckley, A. N. McCaughan, J. Chiles, R. P. Mirin, S. W. Nam, J. M. Shainline, G. Bruer, J. S. Plank, and C. D. Schuman. 2018. Design of superconducting optoelectronic networks for neuromorphic computing. In IEEE International Conference on Rebooting Computing. Tysons, VA, 36--42.
    [4]
    S. Cawley, F. Morgan, B. McGinley, S. Pande, L. McDaid, S. Carrillo, and J. Harkin. 2011. Hardware spiking neural network prototyping and application. Genetic Programming and Evolvable Machines 12, 3 (2011), 257--280.
    [5]
    G. Chakma, N. D. Skuda, C. D. Schuman, J. S. Plank, M. E. Dean, and G. S. Rose. 2018. Energy and Area Efficiency in Neuromorphic Computing for Resource Constrained Devices. In Proceedings of ACM Great Lake Symposium on VLSI (GLSVLSI). Chicago, IL, 379--383.
    [6]
    M. Davies et al. 2018. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1 (2018), 82--99.
    [7]
    Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci. 2016. Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1--8.
    [8]
    Mihaela Dimovska, J. Travis Johnston, Catherine D. Schuman, J. Parker Mitchell, and Thomas E. Potok. 2019. Multi-Objective Optimization for Size and Resilience of Spiking Neural Networks. In 2019 IEEE Annual Ubiquitous Computing, Electronics, and Mobile Communication Conference. IEEE, In press.
    [9]
    A.Disney, J. Reynolds, C.D. Schuman, A. Klibisz, A. Young, and J. S. Plank. 2016. DANNA: A Neuromorphic Software Ecosystem. Biologically Inspired Cognitive Architectures 9 (July 2016), 49--56.
    [10]
    A. W. Disney, J. S. Plank, and M. Dean. 2018. Four Simulators of the DANNA Neuromorphic Computing Architecture. In International Conference on Neuromorphic Computing Systems. ACM, Knoxville, TN.
    [11]
    Chao Du, Fuxi Cai, Mohammed A Zidan, Wen Ma, Seung Hwan Lee, and Wei D Lu. 2017. Reservoir computing using dynamic memristors for temporal information processing. Nature communications 8, 1 (2017), 2204.
    [12]
    Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and Dharmendra S Modha. 2015. Backpropagation for energy-efficient neuromorphic computing. In Advances in Neural Information Processing Systems. 1117--1125.
    [13]
    P. Ferré, F. Mamalet, and S.J. Thorpe. [n.d.]. Unsupervised feature learning with winner-takes-all based STDP. Frontiers in computational neuroscience 12 ([n. d.]).
    [14]
    Dario Floreano, Peter Dürr, and Claudio Mattiussi. 2008. Neuroevolution: from architectures to learning. Evolutionary intelligence 1, 1 (2008), 47--62.
    [15]
    F. Gomez, J. Schmidhuber, and R. Miikkulainen. 2008. Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research 9, May (2008), 937--965.
    [16]
    M. S. Hasan, C. D. Schuman, J. S. Najem, R. Weiss, N. D. Skuda, A. Belianinov, C. P. Collier, S. A. Sarles, and G. S. Rose. 2018. Biomimetic, Soft-Material Synapse for Neuromorphic Computing: From Device to Network. In IEEE 13th Dallas Circuits and Systems Conference (DCAS). https://doi.org/10.1109/DCAS.2018.8620187
    [17]
    N. Kasabov, V. Feigin, Z. Hou, Y. Chen, L. Liang, R. Krishnamurthi, M. Othman, and P. Parmar. 2014. Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134 (2014), 269--279.
    [18]
    E. Kim, J. Yarnall, P. Shaha, and G. T. Kenyon. 2019. A Neuromorphic Sparse Coding Defense to Adversarial Images., 8 pages.
    [19]
    Dhireesha Kudithipudi, Qutaiba Saleh, Cory Merkel, James Thesing, and Bryant Wysocki. 2016. Design and analysis of a neuromemristive reservoir computing architecture for biosignal processing. Frontiers in neuroscience 9 (2016), 502.
    [20]
    Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training deep spiking neural networks using backpropagation. Frontiers in neuroscience 10 (2016), 508.
    [21]
    R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier, 293--312.
    [22]
    J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2019. Caspian: A Neuromorphic Development Platform. In Submitted.
    [23]
    J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. D. Schuman, M. E. Dean, G. S. Rose, N. C. Cady, and J. Van Nostrand. 2019. The TENNLab Suite of LIDAR-Based Control Applications for Recurrent, Spiking, Neuromorphic Systems. In 44th Annual GOMACTech Conference. Albuquerque.
    [24]
    James S Plank, Catherine D Schuman, Grant Bruer, Mark E Dean, and Garrett S Rose. 2018. The TENNLab exploratory neuromorphic computing framework. IEEE Letters of the Computer Society 1, 2 (2018), 17--20.
    [25]
    Anvesh Polepalli, Nicholas Soures, and Dhireesha Kudithipudi. 2016. Digital neuromorphic design of a liquid state machine for real-time processing. In 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1--8.
    [26]
    Daniel Rasmussen. 2019. NengoDL: Combining deep learning and neuromorphic modelling methods. Neuroinformatics (2019), 1--18.
    [27]
    John JM Reynolds, James S Plank, and Catherine D Schuman. 2019. Intelligent Reservoir Generation for Liquid State Machines using Evolutionary Optimization. In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 1--8.
    [28]
    B. Schrauwen, D. Verstraeten, and J. Van Campenhout. 2007. An overview of reservoir computing: theory, applications and implementations. In Proceedings of the 15th european symposium on artificial neural networks. 471--482.
    [29]
    C.D. Schuman, G. Bruer, A.R. Young, M. Dean, and J.S. Plank. 2018. Understanding Selection And Diversity For Evolution Of Spiking Recurrent Neural Networks. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 1--8.
    [30]
    C.D. Schuman, A. Disney, S.P. Singh, G. Bruer, J.P. Mitchell, A. Klibisz, and J.S. Plank. 2016. Parallel evolutionary optimization for neuromorphic network training. In Proceedings of the Workshop on Machine Learning in High Performance Computing Environments. IEEE Press, 36--46.
    [31]
    C.D. Schuman, J.S. Plank, A. Disney, and J. Reynolds. 2016. An evolutionary optimization framework for neural networks and neuromorphic architectures. In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 145--154.
    [32]
    C. D. Schuman, T. E. Potok, S. Young, R. Patton, G. Perdue, G. Chakma, A. Wyer, and G. S. Rose. 2017. Neuromorphic computing for temporal scientific data classification. In Neuromorphic Computing Symposium (NCS '17). ACM, New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3183584.3183612
    [33]
    William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B Aimone. 2019. Training deep neural networks for binary communication with the Whetstone method. Nature Machine Intelligence 1, 2 (2019), 86.
    [34]
    S.B. Shrestha and G. Orchard. 2018. SLAYER: Spike layer error reassignment in time. In Advances in Neural Information Processing Systems. 1412--1421.
    [35]
    K.O. Stanley and R. Miikkulainen. 2002. Evolving neural networks through augmenting topologies. Evolutionary computation 10, 2 (2002), 99--127.
    [36]
    Johannes C Thiele, Olivier Bichler, and Antoine Dupret. 2018. Event-based, timescale invariant unsupervised online deep learning with STDP. Frontiers in computational neuroscience 12 (2018), 46.
    [37]
    X. Yao. 1999. Evolving artificial neural networks. Proc. IEEE 87, 9 (1999), 1423--1447.
    [38]
    Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and Robert M Patton. 2015. Optimizing deep learning hyper-parameters through an evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments. ACM, 4.

    Cited By

    View all
    • (2024)Efficient Spiking Neural Networks With Radix EncodingIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.319591835:3(3689-3701)Online publication date: Mar-2024
    • (2024)Energy Efficient Implementation of MVM Operations Using Filament-Free Bulk RRAM Array2024 Neuro Inspired Computational Elements Conference (NICE)10.1109/NICE61972.2024.10549369(1-5)Online publication date: 23-Apr-2024
    • (2024)Embracing the Hairball: An Investigation of Recurrence in Spiking Neural Networks for Control2024 Neuro Inspired Computational Elements Conference (NICE)10.1109/NICE61972.2024.10548512(1-5)Online publication date: 23-Apr-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    NICE '20: Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop
    March 2020
    131 pages
    ISBN:9781450377188
    DOI:10.1145/3381755
    Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    In-Cooperation

    • INTEL: Intel Corporation
    • IBM: IBM

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 June 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. genetic algorithms
    2. neuromorphic computing
    3. spiking neural networks

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    NICE '20
    NICE '20: Neuro-inspired Computational Elements Workshop
    March 17 - 20, 2020
    Heidelberg, Germany

    Acceptance Rates

    Overall Acceptance Rate 25 of 40 submissions, 63%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)168
    • Downloads (Last 6 weeks)24
    Reflects downloads up to 11 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Efficient Spiking Neural Networks With Radix EncodingIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.319591835:3(3689-3701)Online publication date: Mar-2024
    • (2024)Energy Efficient Implementation of MVM Operations Using Filament-Free Bulk RRAM Array2024 Neuro Inspired Computational Elements Conference (NICE)10.1109/NICE61972.2024.10549369(1-5)Online publication date: 23-Apr-2024
    • (2024)Embracing the Hairball: An Investigation of Recurrence in Spiking Neural Networks for Control2024 Neuro Inspired Computational Elements Conference (NICE)10.1109/NICE61972.2024.10548512(1-5)Online publication date: 23-Apr-2024
    • (2024)Enhanced read resolution in reconfigurable memristive synapses for Spiking Neural NetworksScientific Reports10.1038/s41598-024-58947-214:1Online publication date: 17-Apr-2024
    • (2024)Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edgeNature Communications10.1038/s41467-024-46682-115:1Online publication date: 25-Apr-2024
    • (2023)Sensitivity analysis of point neuron model simulations implemented on neuromorphic hardwareFrontiers in Neuroscience10.3389/fnins.2023.119828217Online publication date: 24-Aug-2023
    • (2023)Integration of neuromorphic AI in event-driven distributed digitized systems: Concepts and research directionsFrontiers in Neuroscience10.3389/fnins.2023.107443917Online publication date: 17-Feb-2023
    • (2023)Toward robust and scalable deep spiking reinforcement learningFrontiers in Neurorobotics10.3389/fnbot.2022.107564716Online publication date: 20-Jan-2023
    • (2023)Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materialsThe International Journal of High Performance Computing Applications10.1177/1094342023117853737:3-4(351-379)Online publication date: 22-Jun-2023
    • (2023)Zespol: A Lightweight Environment for Training Swarming AgentsProceedings of the 2023 International Conference on Neuromorphic Systems10.1145/3589737.3606002(1-5)Online publication date: 1-Aug-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media