Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation

Published: 28 May 2020 Publication History

Abstract

NISQ (Noisy, Intermediate-Scale Quantum) computing requires error mitigation to achieve meaningful computation. Our compilation tool development focuses on the fact that the error rates of individual qubits are not equal, with a goal of maximizing the success probability of real-world subroutines such as an adder circuit. We begin by establishing a metric for choosing among possible paths and circuit alternatives for executing gates between variables placed far apart within the processor, and test our approach on two IBM 20-qubit systems named Tokyo and Poughkeepsie. We find that a single-number metric describing the fidelity of individual gates is a useful but imperfect guide.
Our compiler uses this subsystem and maps complete circuits onto the machine using a beam search-based heuristic that will scale as processor and program sizes grow. To evaluate the whole compilation process, we compiled and executed adder circuits, then calculated the Kullback–Leibler divergence (KL-divergence, a measure of the distance between two probability distributions). For a circuit within the capabilities of the hardware, our compilation increases estimated success probability and reduces KL-divergence relative to an error-oblivious placement.

References

[1]
Scott Joel Aaronson. 2004. Limits on Efficient Computation in the Physical World. Ph.D. Dissertation. U.C. Berkeley.
[2]
Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, Fred Chong, Margaret Martonosi, Martin Suchara, Ken Brown, Massoud Pedram, and Todd Brun. 2012. Scaffold: Quantum Programming Language. Technical Report TR-934-12. Princeton University.
[3]
ACM 2006. Computer Architecture News, Proceedings of the 33rd Annual International Symposium on Computer Architecture. ACM.
[4]
Dave Bacon and Wim van Dam. 2010. Recent progress in quantum algorithms. Commun. ACM 53, 2 (Feb. 2010), 84--93.
[5]
R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. 2014. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 7497 (2014), 500--503.
[6]
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. 1997. Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 5 (1997), 1510--1523. arXiv:quant-ph/9701001.
[7]
Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, et al. 2017. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 7682 (2017), 579.
[8]
S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven. 2018. Characterizing quantum supremacy in near-term devices. Nature Physics 14 (June 2018), 595--600.
[9]
Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. 2004. A new quantum ripple-carry addition circuit. arXiv:arXiv:quant-ph/0410184arXiv:quant-ph/0410184.
[10]
Simon J. Devitt, William J. Munro, and Kae Nemoto. 2013. Quantum error correction for beginners. Rep. Prog. Phys. 76, 7 (2013), 076001. http://stacks.iop.org/0034-4885/76/i=7/a=076001
[11]
Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha Narang. 2018. Qubit Allocation for Noisy Intermediate-Scale Quantum Computers. arXiv:arXiv:1810.08291arXiv:1810.08291.
[12]
Robert W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (June 1962), 345–.
[13]
Robert W. Floyd and Ronald L. Rivest. 1975. Algorithm 489: The algorithm SELECT—For finding the ith smallest of n elements [M1]. Commun. ACM 18, 3 (March 1975), 173.
[14]
Austin G. Fowler, Simon J. Devitt, and Lloyd C. Hollenberg. 2004. Implementation of Shor’s algorithm on a linear nearest neighbor qubit array. Quantum Inf. Comput. 4, 4 (2004), 237.
[15]
Austin G. Fowler and Craig Gidney. 2018. Low overhead quantum computation using lattice surgery. (2018). arXiv:arXiv:1808.06709arXiv:1808.06709.
[16]
Simon Gay. 2005. Quantum programming languages: Survey and bibliography. Bulletin of the European Association for Theoretical Computer Science (June 2005).
[17]
Daniel Gottesman. 2009. An introduction to quantum error correction and fault-tolerant quantum computation. (2009). arXiv:arXiv:0904.2557arXiv:0904.2557.
[18]
Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A scalable quantum programming language. In ACM SIGPLAN Notices, Vol. 48. ACM, 333--342.
[19]
Emily Grumbling and Mark Horowitz (Eds.). 2018. Quantum Computing: Progress and Prospects. National Academies Press.
[20]
Aram W. Harrow and Ashley Montanaro. 2017. Quantum computational supremacy. Nature 549, 7671 (2017), 203.
[21]
Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow, Kenneth R. Brown, Diana Franklin, Frederic T. Chong, and Margaret Martonosi. 2015. Compiler management of communication and parallelism for quantum computation. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 445--456.
[22]
IBM. 2018. IBMQ experience Device. Retrieved June 7, 2018 from https://quantumexperience.ng.bluemix.net/qx/devices.
[23]
Nemanja Isailovic, Yatish Patel, Mark Whitney, and John Kubiatowicz. 2006. Interconnection networks for scalable quantum computers, See [], 366–377.
[24]
Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi. 2014. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers (CF’14). ACM, New York, NY, Article 1, 10 pages.
[25]
Cody Jones. 2013. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87 (Feb 2013), 022328. Issue 2.
[26]
N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto. 2012. Layered architecture for quantum computing. Phys. Rev. X 2 (Jul 2012), 031007. Issue 3.
[27]
Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. 2017. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 7671 (2017), 242.
[28]
E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. 2008. Randomized benchmarking of quantum gates. Phys. Rev. A 77 (Jan 2008), 012307. Issue 1.
[29]
Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 2007. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 4 (Oct 2007), 042319.
[30]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien. 2010. Quantum computers. Nature 464 (Mar 2010), 45--53.
[31]
Daniel A. Lidar and Todd A. Brun. 2013. Introduction to decoherence and noise in open quantum systems. In Quantum Error Correction. Cambridge Press, 3--45.
[32]
A. P. Lund, M. J. Bremner, and T. C. Ralph. 2017. Quantum sampling problems, bosonsampling and quantum supremacy. npj Quantum Information 3, 15 (Apr 2017), 15 pages. arxiv:quant-ph/1702.03061
[33]
Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. 2012. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 85, 4 (Apr 2012), 042311.
[34]
Igor L. Markov and Yaoyun Shi. 2008. Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38, 3 (2008), 963--981.
[35]
E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X. Q. Zhou, and J. L. O’Brien. 2012. Experimental realization of Shor’s quantum factoring algorithm using qubit recycling. Nat. Photonics 6, 11 (2012), 773–776.
[36]
Ashley Montanaro. 2016. Quantum algorithms: An overview. npj Quantum Information 2 (2016), 15023.
[37]
M. Mosca. 2008. Quantum algorithms. arXiv:arXiv:0808.0369arXiv:0808.0369.
[38]
Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University Press.
[39]
Mark Oskin, Frederic T. Chong, Isaac L. Chuang, and John Kubiatowicz. 2003. Building quantum wires: The long and short of it. In Computer Architecture News, Proceedings of the 30th Annual International Symposium on Computer Architecture. ACM.
[40]
Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar Solomonik, and Robert Wisnieff. 2017. Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits. arXiv:1710.05867 arXiv:1710.05867v1.
[41]
John Preskill. 2012. Quantum computing and the entanglement frontier. (2012). arxiv:quant-ph/1203.5813 arXiv:1203.5813.
[42]
John Preskill. 2018. Quantum Computing in the NISQ era and beyond. arXiv:1801.00862 arXiv:1801.00862v3.
[43]
R. C. Prim. 1957. Shortest connection networks and some generalizations. The Bell System Technical Journal 36, 6 (Nov 1957), 1389--1401.
[44]
Troels F. Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer. 2014. Defining and detecting quantum speedup. Science 345, 6195 (2014), 420--424. arXiv:http://www.sciencemag.org/content/345/6195/420.full.pdf
[45]
Marco Roth, Marc Ganzhorn, Nikolaj Moll, Stefan Filipp, Gian Salis, and Sebastian Schmidt. 2017. Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits. Phys. Rev. A 96, 6 (Dec 2017), 062323.
[46]
Peter Selinger. 2015. Efficient Clifford+T approximation of single-qubit operators. Quantum Information 8 Computation 15, 1–2 (2015), 159--180. arXiv:1212.6253.
[47]
Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintao Pereira. 2018. Qubit allocation. In Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO 2018). ACM, New York, NY, 113--125.
[48]
Swamit S. Tannu and Moinuddin K. Qureshi. 2018. A case for variability-aware policies for NISQ-era quantum computers. arXiv:arXiv:1805.10224 arXiv:1805.10224.
[49]
Barbara M. Terhal. 2015. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 2 (Apr 2015), 307--346.
[50]
Darshan D. Thaker, Tzvetan Metodi, Andrew Cross, Isaac Chuang, and Frederic T. Chong. 2006. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing, see [], 378–390.
[51]
Rodney Van Meter and Simon Devitt. 2016. The path to scalable distributed quantum computing. IEEE Computer 49, 9 (Sept 2016), 31--42.
[52]
Rodney Van Meter and Clare Horsman. 2013. A blueprint for building a quantum computer. Commun. ACM 53, 10 (Oct 2013), 84--93.
[53]
Rodney Van Meter and Kohei M. Itoh. 2005. Fast quantum modular exponentiation. Physical Review A 71, 5 (May 2005), 052320.
[54]
Rodney Van Meter, W. J. Munro, Kae Nemoto, and Kohei M. Itoh. 2006. Distributed arithmetic on a quantum multicomputer, See [], 354--365.
[55]
Stephen Warshall. 1962. A theorem on Boolean matrices. J. ACM 9, 1 (Jan 1962), 11--12.
[56]
Dave Wecker and Krysta M. Svore. 2014. LIQUi|>: A software design architecture and domain-specific language for quantum computing. (2014). arXiv:arXiv:1402.4467 arXiv:1402.4467.
[57]
Jiehang Zhang, Guido Pagano, Paul W. Hess, Antonis Kyprianidis, Patrick Becker, Harvey Kaplan, Alexey V. Gorshkov, Z.-X. Gong, and Christopher Monroe. 2017. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 7682 (2017), 601.
[58]
Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD) (2018).

Cited By

View all
  • (2024)A New Routing Strategy to Improve Success Rates of Quantum ComputersProceedings of the Great Lakes Symposium on VLSI 202410.1145/3649476.3658790(546-550)Online publication date: 12-Jun-2024
  • (2024)Testing and Debugging Quantum CircuitsIEEE Transactions on Quantum Engineering10.1109/TQE.2024.33748795(1-15)Online publication date: 2024
  • (2024)Quantum Vulnerability Analysis to Guide Robust Quantum Computing System DesignIEEE Transactions on Quantum Engineering10.1109/TQE.2023.33436255(1-11)Online publication date: 2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 16, Issue 3
Special Issue on Nanoelectronic Device, Circuit, and Architecture Design, Part 1 and Regular Papers
July 2020
214 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/3399633
  • Editor:
  • Ramesh Karri
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 28 May 2020
Online AM: 07 May 2020
Accepted: 01 February 2020
Revised: 01 January 2020
Received: 01 July 2019
Published in JETC Volume 16, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Error Aware compilation
  2. Experimental Quantum Computation
  3. Quantum Programming Tools

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • MEXT Quantum Leap Flagship Program

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)87
  • Downloads (Last 6 weeks)10
Reflects downloads up to 01 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A New Routing Strategy to Improve Success Rates of Quantum ComputersProceedings of the Great Lakes Symposium on VLSI 202410.1145/3649476.3658790(546-550)Online publication date: 12-Jun-2024
  • (2024)Testing and Debugging Quantum CircuitsIEEE Transactions on Quantum Engineering10.1109/TQE.2024.33748795(1-15)Online publication date: 2024
  • (2024)Quantum Vulnerability Analysis to Guide Robust Quantum Computing System DesignIEEE Transactions on Quantum Engineering10.1109/TQE.2023.33436255(1-11)Online publication date: 2024
  • (2024)Deep Reinforcement Learning Strategies for Noise-Adaptive Qubit Routing2024 IEEE International Conference on Quantum Software (QSW)10.1109/QSW62656.2024.00030(146-156)Online publication date: 7-Jul-2024
  • (2024) Simulating lattice gauge theory on a quantum computer Physical Review E10.1103/PhysRevE.109.015307109:1Online publication date: 26-Jan-2024
  • (2024)Distributed quantum computing: A surveyComputer Networks10.1016/j.comnet.2024.110672(110672)Online publication date: Aug-2024
  • (2024)Error estimation in current noisy quantum computersQuantum Information Processing10.1007/s11128-024-04384-z23:5Online publication date: 11-May-2024
  • (2023)Investigating the Effects of Hyperparameters in Quantum-Enhanced Deep Reinforcement LearningQuantum Engineering10.1155/2023/24519902023(1-16)Online publication date: 14-Mar-2023
  • (2023)SpinQ: Compilation Strategies for Scalable Spin-Qubit ArchitecturesACM Transactions on Quantum Computing10.1145/36244845:1(1-36)Online publication date: 16-Dec-2023
  • (2023)Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum ComputingProceedings of the Great Lakes Symposium on VLSI 202310.1145/3583781.3590315(427-431)Online publication date: 5-Jun-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media