Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3388440.3414917acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
abstract

Multi-omics data integration in the Cloud: Analysis of Statistically Significant Associations Between Clinical and Molecular Features in Breast Cancer

Published: 10 November 2020 Publication History

Abstract

Breast Cancers are among the most common forms of cancers impacting women with over 1 million diagnoses every year worldwide. They are complex cancers characterized by distinct clinical outcomes, morphological and molecular features. As high-throughput technologies generating data at the mRNA and protein levels become cheaper and more accessible, researchers are now able to study these entities in concert with clinical features to gain a more holistic picture of Breast Cancer and other complex diseases.
In this poster, we aimed at identifying the concordance or discordance of mRNA and protein expressions that are significantly associated with Breast Cancer histological subtypes and other relevant clinical features. We employed a novel cloud-based approach to analyze these statistical associations using available genomic, proteomic, and clinical cancer data on the Google Cloud through the ISB-CGC, one of the National Cancer Institute's (NCI) Cloud Resources.
Our results indicate that, considering all available clinical features, a considerable number of molecules (genes and proteins) are significantly associated with the Breast Cancer histological subtypes of infiltrating ductal carcinoma and infiltrating lobular carcinoma, two common forms associated with invasive Breast Cancer. Moreover, statistically significant associations were overrepresented for molecules involved in PI3K/AKT signaling, negative regulation of the PI3K/AKT network and extra-nuclear estrogen signaling. Taken together, these results demonstrate how powerful cloud-based analytics can be in identifying novel molecular relationships relevant for Breast Cancer. text here.
  1. Multi-omics data integration in the Cloud: Analysis of Statistically Significant Associations Between Clinical and Molecular Features in Breast Cancer

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    BCB '20: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
    September 2020
    193 pages
    ISBN:9781450379649
    DOI:10.1145/3388440
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 November 2020

    Check for updates

    Author Tags

    1. BigQuery
    2. Cancer Genomics
    3. Cloud Computing
    4. Multi-omics data integration
    5. TCGA

    Qualifiers

    • Abstract
    • Research
    • Refereed limited

    Conference

    BCB '20
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 254 of 885 submissions, 29%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 44
      Total Downloads
    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 11 Sep 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media