Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Model-based Design of Hardware SC Polar Decoders for FPGAs

Published: 30 May 2020 Publication History

Abstract

Polar codes are a new error correction code family that should be benchmarked and evaluated in comparison to LDPC and turbo-codes. Indeed, recent advances in the 5G digital communication standard recommended the use of polar codes in EMBB control channels. However, in many cases, the implementation of efficient FEC hardware decoders is challenging. Specialised knowledge is required to enable and facilitate testing, rapid design iterations, and fast prototyping. In this article, a model-based design methodology to generate efficient hardware SC polar code decoders is presented. With HLS design process and tools, we demonstrate how FPGA system designers can quickly develop complex hardware systems with good performances. The favourable impact of design space exploration is underlined on achievable performances when a relevant computation model is used. The flexibility of the abstraction layers is evaluated. Hardware decoder generation efficiency is assessed and compared to competing approaches. It is shown that the fine-tuning of computation parallelism, bit length, pruning level, and working frequency help to design high-throughput decoders with moderate hardware complexities. Decoding throughputs higher than 300 Mbps are achieved on an Xilinx Virtex-7 device and on an Altera Stratix IV device.

References

[1]
3GPP TS 38.212. 2018. Multiplexing and Channel Coding. 3GPP TS 38.212 V15.2.0.
[2]
O. Afisiadis, A. Balatsoukas, and A. Burg. 2015. A low-complexity improved successive cancellation decoder for polar codes. In Proceedings of the Asilomar Conference.
[3]
A. Alamdar-Yazdi and F. R. Kschischang. 2011. A simplified successive-cancellation decoder for polar codes. IEEE Commun. Lett. 15, 12 (Dec. 2011), 1378--1380.
[4]
J. Andrade, G. Falcao, and V. Silva. 2014. Flexible design of wide-pipeline based WiMAX QC-LDPC decoder architectures on FPGAs using high-level synthesis. IET Electr. Lett. 50, 11 (2014), 839--840.
[5]
J. Andrade, N. George, K. Karras, D. Novo, F. Pratas, L. Sousa, P. Ienne, G. Falcao, and V. Silva. 2017. Design space exploration of LDPC decoders using high-level synthesis. IEEE Access 5 (2017), 14600--14615.
[6]
E. Arikan. 2008. A performance comparison of polar codes and Reed-Muller codes. IEEE Commun. Lett. 12, 6 (Jun. 2008), 447--449.
[7]
E. Arikan. 2009. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55, 7 (Jul. 2009), 3051--3073.
[8]
A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg. 2015. On metric sorting for successive cancellation list decoding of polar codes. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’15).
[9]
Alexios Balatsoukas-Stimming, Alexandre J. Raymond, Warren J. Gross, and Andreas Burg. 2014. Hardware architecture for list successive cancellation decoding of polar codes. IEEE Trans. Circ. Syst. II: Expr. Briefs 61, 8 (Aug. 2014), 609--613.
[10]
G. Berhault, C. Leroux, C. Jego, and D. Dallet. 2017. Memory requirement reduction method for successive cancellation decoding of polar codes. J. Sign. Process. Syst. 88, 3 (Sep. 2017), 425--438.
[11]
A. Cassagne, B. Le Gal, C. Leroux, O. Aumage, and D. Barthou. 2015. An efficient, portable and generic library for successive cancellation decoding of polar codes. In Proceedings of the 28th International Workshop on Languages and Compilers for Parallel Computing (LCPC’15), Vol. 303--317.
[12]
K. Chen, K. Niu, and J.-R. Lin. 2013. Improved successive cancellation decoding of polar codes. IEEE Trans. Commun. 61, 8 (2013), 3100--3107.
[13]
J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. 2011. High-level synthesis for FPGAs: From prototyping to deployment. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 30, 4 (2011), 473--491.
[14]
P. Coussy and A. Morawiec (Eds.). 2008. High-Level Synthesis from Algorithm to Digital Circuit. Springer.
[15]
K. David and H. Berndt. 2018. 6G vision and requirements: Is there any need for beyond 5G? IEEE Vehic. Technol. Mag. 13, 3 (Sep. 2018), 72--80.
[16]
Y. Delomier, B. Le Gal, J. Crenne, and C. Jego. 2018. Model-based design of efficient LDPC decoder architectures. In Proceedings of the 2018 IEEE 10th International Symposium on Turbo Codes Iterative Information Processing (ISTC’18).
[17]
O. Dizdar and E. Arikan. 2016. A high-throughput energy-efficient implementation of successive cancellation decoder for polar codes using combinational logic. IEEE Trans. Circ. Syst. I: Regul. Pap. 63, 3 (Mar. 2016), 436--447.
[18]
YouZhe Fan, ChenYang Xia, Ji Chen, Chi-Ying Tsui, Jie Jin, Hui Shen, and Bin Li. 2016. A low-latency list successive-cancellation decoding implementation for polar codes. IEEE J. Select. Areas Commun. 34, 2 (Feb. 2016), 303--317.
[19]
P. Giard, A. Balatsoukas-Stimming, T. C. Müller, A. Burg, C. Thibeault, and W. J. Gross. 2016. A multi-Gbps unrolled hardware list decoder systematic polar code. In Proceedings of Asilomar Conference on Signals, Systems and Computers. 1194--1198.
[20]
P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J. Gross. 2018. Fast low-complexity decoders for low-rate polar codes. J. Sign. Process. Syst. 90, 5 (May 2018), 675--685.
[21]
P. Giard, G. Sarkis, C. Leroux, C. Thibeault, and W. J. Gross. 2018. Low-latency software polar decoders. J. Sign. Process. Syst. 90, 5 (May 2018), 761--775.
[22]
P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross. 2016. Multi-mode unrolled architectures for polar decoders. IEEE Trans. Circ. Syst. I: Regul. Pap. 63, 9 (Sep. 2016), 1443--1453.
[23]
P. Giard, G. Sarkis, C. Thibeault, W. J. Gross. 2015. 237 Gbit/s unrolled hardware polar decoder. Electr. Lett. 51, 10 (May 2015), 762--763.
[24]
M. Hanif and M. Ardakani. 2017. Fast successive-cancellation decoding of polar codes: Identification and decoding of new nodes. IEEE Commun. Lett. 21, 11 (Nov. 2017), 2360--2363.
[25]
M. Hanif and M. Ardakani. 2017. Fast successive-cancellation decoding of polar codes: Identification and decoding of new nodes. IEEE Commun. Lett. 21, 11 (2017), 2360--2363.
[26]
S. A. Hashemi, C. Condo, and W. J. Gross. 2017. Fast and flexible successive-cancellation list decoders for polar codes. In IEEE Transactions on Signal Processing, Vol. 65. 5756--5769.
[27]
Seyyed Ali Hashemi, Carlo Condo, Marco Mondelli, and Warren J. Gross. 2019. Rate-flexible fast polar decoders. IEEE Trans. Sign. Process. 67, 22 (Oct. 2019), 5689--5701.
[28]
Claus Kestel, Stefan Weithoffer, and Norbert Wehn. 2018. Polar code decoder exploration framework. Adv. Radio Sci. 16 (May 2018), 43--50.
[29]
Byeong Yong Kong and In-Cheol Park. 2018. Hybrid sorting architecture for low-latency successive cancellation list decoding of polar codes. J. Semiconduct. Technol. Sci. 18, 5 (Oct. 2018), 1598--1657.
[30]
Byeong Yong Kong, Hoyoung Yoo, and In-Cheol Park. 2016. Efficient sorting architecture for successive-cancellation-list decoding of polar codes. IEEE Trans. Circ. Syst. II: Expr. Briefs 63, 7 (Jul. 2016), 673.
[31]
B. Le Gal, C. Leroux, and C. Jego. 2014. Software polar decoder on an embedded processor. In Proceedings of the IEEE International Workshop on Signal Processing Systems (SIPS’14). 1--6.
[32]
B. Le Gal, C. Leroux, and C. Jego. 2015. Multi-Gb/s software decoding of polar codes. IEEE Trans. Sign. Process. 63, 2 (Jan. 2015), 349--359.
[33]
B. Le Gal, C. Leroux, and C. Jego. 2016. A scalable 3-phase polar decoder. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS’16).
[34]
B. Le Gal, C. Leroux, and C. Jego. 2017. Successive cancellation decoder for very long polar codes. In Proceedings of the IEEE Internationnal Workshop on Signal Processing Systems (SIPS’17). Lorient, France.
[35]
C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross. 2013. A semi-parallel successive-cancellation decoder for polar codes. IEEE Trans. Sign. Process. 61, 2 (2013), 289--299.
[36]
C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross. 2012. Hardware implementation of successive-cancellation decoders for polar codes. J. Sign. Process. Syst. 69 (2012), 305--315.
[37]
B. Li, H. Shen, and D. Tse. 2012. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Commun. Lett. 16, 12 (2012), 2044--2047.
[38]
Huan Li. 2018. Enhanced metric sorting for successive cancellation list decoding of polar codes. IEEE Commun. Lett. 22, 4 (Apr. 2018), 664--667.
[39]
Y. Li and R. Liu. 2016. High throughput GPU polar decoder. In Proceedings of the 2nd IEEE International Conference on Computer and Communications (ICCC’16). 1123--1127.
[40]
X. Liang, C. Yang, J. Zhang, W. Song, and X. You. 2016. Hardware efficient and low-latency CA-SCL decoder based on distributed sorting. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’16).
[41]
G. Liva, L. Gaudio, T. Ninacs, and T. Jerkovits. 2016. Code design for short blocks: A survey. In Proceedings of the Ultra-Reliable and Mission Critical Communication Workshop.
[42]
G. Martin and G. Smith. 2009. High-level synthesis: Past, present, and future. IEEE Des. Test Comput. 26, 4 (2009), 18--25.
[43]
K. Niu and K. Chen. 2012. CRC-aided decoding of polar codes. IEEE Commun. Lett. 16, 10 (Oct. 2012), 1668--1671.
[44]
K. Niu and K. Chen. 2012. Stack decoding of polar codes. IEEE Electr. Lett. 48, 12 (2012), 695--697.
[45]
K. Niu, K. Chen, J. Lin, and Q. T. Zhang. 2014. Polar codes: Primary concepts and practical decoding algorithms. IEEE Commun. Mag. 52, 7 (Jul. 2014), 192--203.
[46]
A. J. Raymond and W. J. Gross. 2013. Scalable successive-cancellation hardware decoder for polar codes. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing.
[47]
A. J. Raymond and W. J. Gross. 2014. A scalable successive-cancellation decoder for polar codes. IEEE Trans. Sign. Process. 62, 20 (2014), 5339--5347.
[48]
G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross. 2014. Fast polar decoders: Algorithm and implementation. J. Select. Areas Commun. 32, 5 (2014), 946--957.
[49]
I. Tal and A. Vardy. 2013. How to construct polar codes. IEEE Trans. Inf. Theory 59, 10 (Oct. 2013), 6562--6582.
[50]
I. Tal and A. Vardy. 2015. List decoding of polar codes. IEEE Trans. Inf. Theory 61, 5 (May 2015), 2213--2226.
[51]
ChenYang Xia, YouZhe Fan, Ji Chen, Chi ying Tsui, ChongYang Zeng, Jie Jin, and Bin Li. 2017. An implementation of list successive cancellation decoder with large list size for polar codes. In Proceedings of the 27th International Conference on Field Programmable Logic and Applications (FPL’17).
[52]
Xilinx. 2017. Vivado Design Suite User Guide: High-Level Synthesis ((v2017.1).
[53]
Xilinx. 2019. 7 Series FPGAs Memory Resources: User Guide (v1.14).
[54]
H-Y. Yoon, S.-J. Hwang, and T.-H. Kim. 2018. A 655Mbps successive-cancellation decoder for a 1024-bit polar code in 180nm CMOS. In Proceedings of the IEEE Asian Solid-State Circuits Conference (A-SSCC’18). 281--284.
[55]
B. Yuan and K. K. Parhi. 2014. Low-latency successive-cancellation polar decoder architectures using 2-bit decoding. IEEE Trans. Circ. Syst. I: Regul. Pap. 61, 4 (Apr. 2014), 1241--1254.
[56]
C. Zhang and K. K. Parhi. 2013. Low-latency sequential and overlapped architectures for successive cancellation polar decoder. IEEE Trans. Sign. Process. 61, 10 (May 2013), 2429--2441.
[57]
X. Zhang, X. Yan, Q. Zeng, J. Cui, N. Cao, and R. Higgs. 2018. High-throughput fast-SSC polar decoder for wireless communications. Wireless Commun. Mobile Comput. 2018, Article 7428039 (Jul. 2018), 1--10.
[58]
Y. Zhou, J. Lin, and Z. Wang. 2019. Improved fast-SSC-flip decoding of polar codes. IEEE Commun. Lett. 23, 6 (June 2019), 950--953.

Cited By

View all
  • (2022)On the Latency and Complexity of Semi-Parallel Decoding Architectures for 5G NR Polar Codes2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC)10.1109/ISIVC54825.2022.9800721(1-6)Online publication date: 18-May-2022
  • (2022)High-throughput FFT architectures using HLS tools2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS)10.1109/ICECS202256217.2022.9970886(1-4)Online publication date: 24-Oct-2022
  • (2022)Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures for 5G NR Polar CodesIEEE Access10.1109/ACCESS.2022.321629210(113980-113994)Online publication date: 2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems  Volume 13, Issue 2
June 2020
185 pages
ISSN:1936-7406
EISSN:1936-7414
DOI:10.1145/3383521
  • Editor:
  • Deming Chen
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 May 2020
Online AM: 07 May 2020
Accepted: 01 March 2020
Revised: 01 January 2020
Received: 01 August 2019
Published in TRETS Volume 13, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ECC
  2. FPGA
  3. High level synthesis
  4. LDPC
  5. RTL
  6. model-based design
  7. polar code

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)39
  • Downloads (Last 6 weeks)4
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)On the Latency and Complexity of Semi-Parallel Decoding Architectures for 5G NR Polar Codes2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC)10.1109/ISIVC54825.2022.9800721(1-6)Online publication date: 18-May-2022
  • (2022)High-throughput FFT architectures using HLS tools2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS)10.1109/ICECS202256217.2022.9970886(1-4)Online publication date: 24-Oct-2022
  • (2022)Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures for 5G NR Polar CodesIEEE Access10.1109/ACCESS.2022.321629210(113980-113994)Online publication date: 2022
  • (2022)Semi-parallel polar decoder architecture using shift-register-based partial-sum computation for 5G mobile communicationsMaterials Today: Proceedings10.1016/j.matpr.2022.04.17162(4985-4990)Online publication date: 2022

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media