Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3393691.3394212acmconferencesArticle/Chapter ViewAbstractPublication PagesmetricsConference Proceedingsconference-collections
abstract
Public Access

Predict and Match: Prophet Inequalities with Uncertain Supply

Published: 08 June 2020 Publication History

Abstract

We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution.Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare).
Our main results are for the setting where items have independent horizon distributions satisfying the monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at which items are removed from the system. We implement this policy via a novel technique of matching via probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR horizon distribution with mean μ, we show a tight result: There is a fixed pricing scheme that has competitive ratio at most 2 - 1/μ, and this is the best achievable in this class.
We further show that our results are best possible. First, we show that the competitive ratio is unbounded without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d. MHR and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant greater than 1, which is in sharp contrast to the setting with identical deterministic horizons.

Supplementary Material

MP4 File (3393691.3394212.mp4)
This is the presentation for "Predict and Match: Prophet Inequalities with Uncertain Supply" accepted to SIGMETRICS 2020. We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare).\r\n

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMETRICS '20: Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems
June 2020
124 pages
ISBN:9781450379854
DOI:10.1145/3393691
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2020

Check for updates

Author Tags

  1. online pricing scheme
  2. prophet inequalities
  3. social welfare
  4. stochastic horizon

Qualifiers

  • Abstract

Funding Sources

Conference

SIGMETRICS '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 459 of 2,691 submissions, 17%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 119
    Total Downloads
  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)5
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media