Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3400806.3400835acmotherconferencesArticle/Chapter ViewAbstractPublication PagessmsocietyConference Proceedingsconference-collections
research-article

The homogeneity of right-wing populist and radical content in YouTube recommendations

Published: 22 July 2020 Publication History

Abstract

The use of social media to disseminate extreme political content on the web, especially right-wing populist propaganda, is no longer a rarity in today's life. Recommendation systems of social platforms, which provide personalized filtering of content, can contribute to users forming homogeneous cocoons around themselves. This study investigates YouTube's recommendations system based on 1,663 German political videos in order to analyze the homogeneity of the related content. After examining two datasets (right-wing populist and politically neutral videos), each consisting of ten initial videos and their first and second level recommendations, we show that there is a high degree of homogeneity of right-wing populist and neutral political content in the recommendation network. These findings offer preliminary evidence on the role of YouTube recommendations in fueling the creation of ideologically like-minded information spaces.

References

[1]
Adiya Abisheva, David Garcia, and Frank Schweitzer. 2016. When the filter bubble bursts: collective evaluation dynamics in online communities. In Proceedings of the 8th ACM Conference on Web Science - WebSci ’16, ACM Press, Hannover, Germany, 307–308.
[2]
ARD. 2018. Öffentlich-rechtlicher Rundfunk. Retrieved from http://www.ard.de/home/die-ard/fakten/Oeffentlich_rechtlicher_Rundfunk/458368/index.html
[3]
Eytan Bakshy, Solomon Messing, and Lada A. Adamic. 2015. Exposure to ideologically diverse news and opinion on Facebook. Science 348, 6239 (June 2015), 1130.
[4]
Engin Bozdag and Jeroen van den Hoven. 2015. Breaking the filter bubble: democracy and design. Ethics Inf Technol 17, 4 (December 2015), 249–265.
[5]
Stephan Braun and Ute Vogt. 2007. Die Wochenzeitung „Junge Freiheit“: Kritische Analysen zu Programmatik, Inhalten, Autoren und Kunden.
[6]
Axel Bruns. 2019. It's not the technology, stupid: How the `Echo Chamber’ and `Filter Bubble’ metaphors have failed us. Retrieved from https://eprints.qut.edu.au/131675/
[7]
Bundesministers des Innern, für Bau und Heimat. 2018. Verfassungsschutzbericht 2018. Retrieved from https://www.verfassungsschutz.de/embed/vsbericht-2018.pdf
[8]
Bundeswahlleiter. 2017. Wahl zum 19. Deutschen Bundestag am 24. September 2017. Heft 3. Endgültige Ergebnisse nach Wahlkreisen. Bundeswahlleiter Wiesbaden.
[9]
Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding the Detection of Fake Accounts in Large Scale Social Online Services. In Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), USENIX, San Jose, CA, 197–210. Retrieved from https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/cao
[10]
Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement 20, 1 (1960), 37–46.
[11]
Flavio Figueiredo, Fabrício Benevenuto, and Jussara M. Almeida. 2011. The tube over time: characterizing popularity growth of youtube videos. In Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11, ACM Press, Hong Kong, China, 745.
[12]
Paolo Gerbaudo. 2018. Social media and populism: an elective affinity? Media, Culture & Society 40, 5 (July 2018), 745–753.
[13]
Nitin Govil and Anirban Kapil Baishya. 2018. The Bully in the Pulpit: Autocracy, Digital Social Media, and Right-wing Populist Technoculture. Communication, Culture and Critique 11, 1 (2018).
[14]
Mario Haim, Andreas Graefe, and Hans-Bernd Brosius. 2018. Burst of the Filter Bubble?: Effects of personalization on the diversity of Google News. Digital Journalism 6, 3 (March 2018), 330–343.
[15]
Innenministerium Baden-Württemberg. 2015. DIE NPD-PARTEIZEITUNG „DEUTSCHE STIMME“. In Verfassungsschutz 2014 Baden-Württemberg. 198–200. Retrieved from https://im.baden-wuerttemberg.de/fileadmin/redaktion/m-im/intern/dateien/pdf/Verfassungsschutzbericht2014_web_Juli2015.pdf
[16]
Mohsen Jamali and Martin Ester. 2009. TrustWalker: a random walk model for combining trust-based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09, ACM Press, Paris, France, 397.
[17]
Morris Janowitz. 1975. Professional models in journalism: The gatekeeper and the advocate. Journalism quarterly 52, 4 (1975), 618–626.
[18]
Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. Random Walk Based Fake Account Detection in Online Social Networks. In2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, Denver, CO, USA, 273–284.
[19]
Till Keyling. 2017. Kollektives Gatekeeping: Die Herstellung von Publizität in Social Media. Springer VS, Wiesbaden.
[20]
David Krackhardt and Robert N. Stern. 1988. Informal Networks and Organizational Crises: An Experimental Simulation. Social Psychology Quarterly 51, 2 (1988), 123–140.
[21]
Mark Ledwich and Anna Zaitsev. 2019. Algorithmic Extremism: Examining YouTube's Rabbit Hole of Radicalization.
[22]
Weimin Li, Jun Xie, Mingjun Xin, and Jun Mo. 2018. An overlapping network community partition algorithm based on semi-supervised matrix factorization and random walk. Expert Systems with Applications 91, (January 2018), 277–285.
[23]
BW LPB. 2019. Europa hat gewählt, Landeszent-rale für politische Bildung Baden-Württemberg. Retrieved from https://www.europawahl-bw.de/wahlergebnis_europawahl2019.html
[24]
Yijun Mo, Bixi Li, Bang Wang, Laurence T. Yang, and Minghua Xu. 2018. Event recommendation in social networks based on reverse random walk and participant scale control. Future Generation Computer Systems 79, (February 2018), 383–395.
[25]
German Neubaum and Nicole C. Krämer. 2017. Monitoring the Opinion of the Crowd: Psychological Mechanisms Underlying Public Opinion Perceptions on Social Media. Media Psychology 20, 3 (July 2017), 502–531.
[26]
Derek O'Callaghan, Derek Greene, Maura Conway, Joe Carthy, and Pádraig Cunningham. 2013. The Extreme Right Filter Bubble. arXiv:1308.6149 [physics] (August 2013). Retrieved January 16, 2020 from http://arxiv.org/abs/1308.6149
[27]
Raphael Ottoni, Evandro Cunha, Gabriel Magno, Pedro Bernardina, Wagner Meira Jr., and Virgílio Almeida. 2018. Analyzing Right-wing YouTube Channels: Hate, Violence and Discrimination. In Proceedings of the 10th ACM Conference on Web Science - WebSci ’18, ACM Press, Amsterdam, Netherlands, 323–332.
[28]
Ute Pannen. 2010. Social Media: Eine neue Architektur politischer Kommunikation. Forschungsjournal Soziale Bewegungen 23, 3 (January 2010).
[29]
Eli Pariser. 2012. The filter bubble: what the Internet is hiding from you. Penguin Books, London.
[30]
A Perrin and M Anderson. 2019. Share of US adults using social media, including Facebook, is mostly unchanged since 2018. Pew Research Center.
[31]
Pascal Pons and Matthieu Latapy. 2005. Computing Communities in Large Networks Using Random Walks. In Computer and Information Sciences - ISCIS 2005, Springer Berlin Heidelberg, Berlin, Heidelberg, 284–293.
[32]
D. Röchert, G. Neubaum, B. Ross, F. Brachten, and S. Stieglitz. 2020. Opinion-based Homogeneity on YouTube: Combining Sentiment and Social Network Analysis. Computational Communication Research 2, 1 (2020), 81–108.
[33]
Samuel Salzborn. 2015. Rechtsextremismus: Erscheinungsformen und Erklärungsansätze (2., aktualisierte und erweiterte Auflage ed.). Nomos, Baden-Baden.
[34]
Josephine B Schmitt, Diana Rieger, Olivia Rutkowski, and Julian Ernst. 2018. Counter-messages as Prevention or Promotion of Extremism?! The Potential Role of YouTube. Journal of Communication 68, 4 (August 2018), 780–808.
[35]
Juan Carlos Medina Serrano, Morteza Shahrezaye, Orestis Papakyriakopoulos, and Simon Hegelich. 2019. The Rise of Germany's AfD. In Proceedings of the 10th International Conference on Social Media and Society - SMSociety ’19, ACM Press, New York, New York, USA, 214–223.
[36]
A Smith, S Toor, and P Van Kessel. 2018. Many Turn to YouTube for Children's Content, News, How-To Lessons. Pew Research Centre (2018).
[37]
Cass R. Sunstein. 2017.#Republic: divided democracy in the age of social media. Princeton University Press, Princeton ; Oxford.
[38]
Zhe Zhao, Ed Chi, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, and Xinyang Yi. 2019. Recommending what video to watch next: a multitask ranking system. In Proceedings of the 13th ACM Conference on Recommender Systems - RecSys ’19, ACM Press, Copenhagen, Denmark, 43–51.
[39]
Renjie Zhou, Samamon Khemmarat, and Lixin Gao. 2010. The impact of YouTube recommendation system on video views. In Proceedings of the 10th annual conference on Internet measurement - IMC ’10, ACM Press, Melbourne, Australia, 404.
[40]
Frederik Zuiderveen Borgesius, Damian Trilling, Judith Möller, Balázs Bodó, Claes H De Vreese, and Natali Helberger. 2016. Should we worry about filter bubbles? Internet Policy Review. Journal on Internet Regulation 5, 1 (2016).

Cited By

View all
  • (2024)Predicting diversification scores of videos in recommendation networkExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.121803238:PAOnline publication date: 15-Mar-2024
  • (2023)From Facebook to YouTube: The Potential Exposure to COVID-19 Anti-Vaccine Videos on Social MediaSocial Media + Society10.1177/205630512211504039:1Online publication date: 1-Feb-2023
  • (2023)Does algorithmic filtering lead to filter bubbles in online tourist information searches?Information Technology & Tourism10.1007/s40558-023-00279-426:1(183-217)Online publication date: 29-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SMSociety'20: International Conference on Social Media and Society
July 2020
317 pages
ISBN:9781450376884
DOI:10.1145/3400806
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 July 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Filter bubble
  2. Network Analysis
  3. YouTube
  4. right-wing populism

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Conference

SMSociety'20

Acceptance Rates

Overall Acceptance Rate 78 of 189 submissions, 41%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)109
  • Downloads (Last 6 weeks)9
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Predicting diversification scores of videos in recommendation networkExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.121803238:PAOnline publication date: 15-Mar-2024
  • (2023)From Facebook to YouTube: The Potential Exposure to COVID-19 Anti-Vaccine Videos on Social MediaSocial Media + Society10.1177/205630512211504039:1Online publication date: 1-Feb-2023
  • (2023)Does algorithmic filtering lead to filter bubbles in online tourist information searches?Information Technology & Tourism10.1007/s40558-023-00279-426:1(183-217)Online publication date: 29-Dec-2023
  • (2023)Political Polarization in Times of Crisis: Ideological Bias and Emotions of News Coverage of the COVID-19 Pandemic on YouTubeDigital Transformation10.1007/978-3-031-43590-4_4(56-73)Online publication date: 21-Sep-2023
  • (2022)‘Fascist Heroes’ vs. progressive policies and political correctness: Agenda and framing of the Spanish Alt-lite micro-celebrities on YouTubeCatalan Journal of Communication & Cultural Studies10.1386/cjcs_00068_114:2(189-206)Online publication date: 1-Oct-2022
  • (2022)Deradicalizing YouTube: Characterization, Detection, and Personalization of Religiously Intolerant Arabic VideosProceedings of the ACM on Human-Computer Interaction10.1145/35556186:CSCW2(1-25)Online publication date: 11-Nov-2022
  • (2022)“It’s not wrong, but I’m quite disappointed”: Toward an Inclusive Algorithmic Experience for Content Creators with DisabilitiesProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3517574(1-19)Online publication date: 29-Apr-2022
  • (2022)User Expectations of Serendipitous Recommender Systems[ ] With Design: Reinventing Design Modes10.1007/978-981-19-4472-7_86(1322-1336)Online publication date: 6-Nov-2022
  • (2022)Investigating Information Cocoon Attitudes in Short-Form Video ApplicationsHCI International 2022 – Late Breaking Posters10.1007/978-3-031-19682-9_13(89-96)Online publication date: 24-Nov-2022
  • (2021)To be Defined or Not to Be? Addressing Internal Questions in the Online Community for Gender Diverse YouthProceedings of the 20th Annual ACM Interaction Design and Children Conference10.1145/3459990.3465200(552-557)Online publication date: 24-Jun-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media