Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

Published: 22 July 2020 Publication History
  • Get Citation Alerts
  • Abstract

    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled cyber-physical systems associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. Fog computing, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed and heterogeneous, and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing.

    References

    [1]
    M. Aazam and E. Huh. 2015. Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications. 687--694.
    [2]
    Mohammad Aazam, Sherali Zeadally, and Khaled A. Harras. 2018. Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities. Future Generation Computer Systems 87 (2018), 278--289.
    [3]
    Sadam Hussain Abbasi, Nadeem Javaid, Muhammad Hassaan Ashraf, Mubashar Mehmood, Maria Naeem, and Mubariz Rehman. 2019. Load stabilizing in fog computing environment using load balancing algorithm. In Advances on Broadband and Wireless Computing, Communication and Applications. Springer International Publishing, Cham, Switzerland, 737--750.
    [4]
    Eman AbdElhalim, Marwa Obayya, and Sherif Kishk. 2019. Distributed fog-to-cloud computing system: A minority game approach. Concurrency and Computation: Practice and Experience 31, 15 (2019), e5162.
    [5]
    Mainak Adhikari and Hemant Gianey. 2019. Energy efficient offloading strategy in fog-cloud environment for IoT applications. Internet of Things 6 (2019), 100053.
    [6]
    M. Adhikari, M. Mukherjee, and S. N. Srirama. 2019. DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multi-level feedback queueing. IEEE Internet of Things Journal. Accepted.
    [7]
    Mahbuba Afrin, Jiong Jin, and Ashfaqur Rahman. 2018. Energy-delay co-optimization of resource allocation for robotic services in cloudlet infrastructure. In Proceedings of the International Conference on Service-Oriented Computing. 295--303.
    [8]
    Mahbuba Afrin, Jiong Jin, Ashfaqur Rahman, Yu-Chu Tian, and Ambarish Kulkarni. 2019. Multi-objective resource allocation for edge cloud based robotic workflow in smart factory. Future Generation Computer Systems 97 (2019), 119--130.
    [9]
    M. Afrin, M. R. Mahmud, and M. A. Razzaque. 2015. Real time detection of speed breakers and warning system for on-road drivers. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE’15). 495--498.
    [10]
    Mahbuba Afrin, Md Razzaque, Iffat Anjum, Mohammad Mehedi Hassan, and Atif Alamri. 2017. Tradeoff between user quality-of-experience and service provider profit in 5G cloud radio access network. Sustainability 9, 11 (2017), 2127.
    [11]
    Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, Mung Chiang, and Prateek Mittal. 2018. Adaptive fog-based output security for augmented reality. In Proceedings of the 2018 Morning Workshop on Virtual Reality and Augmented Reality Network (VR/AR Network’18). ACM, New York, NY, 1--6.
    [12]
    M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jararweh. 2019. Improving fog computing performance via fog-2-fog collaboration. Future Generation Computer Systems 100 (2019), 260--280.
    [13]
    M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M. Naeem. 2018. Joint cloudlet selection and latency minimization in fog networks. IEEE Transactions on Industrial Informatics 14, 9 (Sept. 2018), 4055--4063.
    [14]
    Adam A. Alli and Muhammad Mahbub Alam. 2019. SecOFF-FCIoT: Machine learning based secure offloading in fog-cloud of things for smart city applications. Internet of Things 7 (2019), 100070.
    [15]
    A. Alnoman and A. Anpalagan. 2018. A dynamic priority service provision scheme for delay-sensitive applications in fog computing. In Proceedings of the 2018 29th Biennial Symposium on Communications (BSC’18). IEEE, Los Alamitos, CA, 1--5.
    [16]
    A. Alrawais, A. Alhothaily, C. Hu, X. Xing, and X. Cheng. 2017. An attribute-based encryption scheme to secure fog communications. IEEE Access 5 (2017), 9131--9138.
    [17]
    Cosimo Anglano, Massimo Canonico, Paolo Castagno, Marco Guazzone, and Matteo Sereno. 2019b. Profit-aware coalition formation in fog computing providers: A game-theoretic approach. Concurrency and Computation: Practice and Experience. In Press.
    [18]
    Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2019a. Online user-driven task scheduling for FemtoClouds. In Proceedings of the 2019 4th International Conference on Fog and Mobile Edge Computing (FMEC’19). 5--12.
    [19]
    Arman Anzanpour, Humayun Rashid, Amir M. Rahmani, Axel Jantsch, Nikil Dutt, and Pasi Liljeberg. 2019. Energy-efficient and reliable wearable Internet-of-Things through fog-assisted dynamic goal management. Procedia Computer Science 151 (2019), 493--500.
    [20]
    H. R. Arkian, A. Diyanat, and A. Pourkhalili. 2017. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications. Journal of Network and Computer Applications 82 (2017), 152--165.
    [21]
    Deeksha Arya and Mayank Dave. 2017. Priority based service broker policy for fog computing environment. In Advanced Informatics for Computing Research. Springer Singapore, Singapore, 84--93.
    [22]
    N. Auluck, A. Azim, and K. Fizza. 2019. Improving the schedulability of real-time tasks using fog computing. IEEE Transactions on Services Computing. Early Access. September 27, 2019.
    [23]
    M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou. 2019. Adaptive resource allocation for computation offloading: A control-theoretic approach. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 23, 20 pages.
    [24]
    E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy. 2017. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access 5 (2017), 9882--9910.
    [25]
    R. K. Barik, A. C. Dubey, A. Tripathi, T. Pratik, S. Sasane, R. K. Lenka, H. Dubey, K. Mankodiya, and V. Kumar. 2018. Mist data: Leveraging mist computing for secure and scalable architecture for smart and connected health. Procedia Computer Science 125 (2018), 647--653.
    [26]
    Sudheer Kumar Battula, Saurabh Garg, Ranesh Kumar Naha, Parimala Thulasiraman, and Ruppa Thulasiram. 2019. A micro-level compensation-based cost model for resource allocation in a fog environment. Sensors 19, 13 (2019), 2954.
    [27]
    Ranjit Kumar Behera, K. Hemant Kumar Reddy, and Diptendu Sinha Roy. 2020. A novel context migration model for fog-enabled cross-vertical IoT applications. In Proceedings of the International Conference on Innovative Computing and Communications. 287--295.
    [28]
    Paolo Bellavista, Javier Berrocal, Antonio Corradi, Sajal K. Das, Luca Foschini, and Alessandro Zanni. 2019. A survey on fog computing for the Internet of Things. Pervasive and Mobile Computing 52 (2019), 71--99.
    [29]
    Paolo Bellavista, Antonio Corradi, Luca Foschini, and Domenico Scotece. 2019. Differentiated service/data migration for edge services leveraging container characteristics. IEEE Access 7 (2019), 139746--139758.
    [30]
    L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone, and G. Ferrari. 2015. Design and deployment of an IoT application-oriented testbed. Computer 48, 9 (Sept. 2015), 32--40.
    [31]
    Amira Rayane Benamer, Hana Teyeb, and Nejib Ben Hadj-Alouane. 2018. Latency-aware placement heuristic in fog computing environment. In On the Move to Meaningful Internet Systems. OTM 2018. Lecture Notes in Computer Science, Vol. 11230. Springer, 241--257.
    [32]
    M. A. Benblidia, B. Brik, L. Merghem-Boulahia, and M. Esseghir. 2019. Ranking fog nodes for tasks scheduling in fog-cloud environments: A fuzzy logic approach. In Proceedings of the 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC’19). 1451--1457.
    [33]
    Munish Bhatia, Sandeep K. Sood, and Simranpreet Kaur. 2019. Quantum-based predictive fog scheduler for IoT applications. Computers in Industry 111 (2019), 51--67.
    [34]
    Huynh Thi Thanh Binh, Tran The Anh, Do Bao Son, Pham Anh Duc, and Binh Minh Nguyen. 2018. An evolutionary algorithm for solving task scheduling problem in cloud-fog computing environment. In Proceedings of the 9th International Symposium on Information and Communication Technology (SoICT’18). ACM, New York, NY, 397--404.
    [35]
    F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog computing and its role in the Internet of Things. In Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing. ACM, New York, NY, 13--16.
    [36]
    A. Brogi and S. Forti. 2017. QoS-aware deployment of IoT applications through the fog. IEEE Internet of Things Journal 4, 5 (Oct. 2017), 1185--1192.
    [37]
    Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 6 (2009), 599--616.
    [38]
    Danilo Charântola, Alexandre C. Mestre, Rafael Zane, and Luiz F. Bittencourt. 2019. Component-based scheduling for fog computing. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC’19 Companion). ACM, New York, NY, 3--8.
    [39]
    Min Chen, Wei Li, Giancarlo Fortino, Yixue Hao, Long Hu, and Iztok Humar. 2019. A dynamic service migration mechanism in edge cognitive computing. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 30, 15 pages.
    [40]
    B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa. 2018. FogFlow: Easy programming of IoT services over cloud and edges for smart cities. IEEE Internet of Things Journal 5, 2 (April 2018), 696--707.
    [41]
    Francesco Chiti, Romano Fantacci, and Benedetta Picano. 2019. A matching game for tasks offloading in integrated edge-fog computing systems. Transactions on Emerging Telecommunications Technologies 31, 2 (2019), e3718.
    [42]
    Tejaswini Choudhari, Melody Moh, and Teng-Sheng Moh. 2018. Prioritized task scheduling in fog computing. In Proceedings of the ACMSE 2018 Conference (ACMSE’18). ACM, New York, NY, Article 22, 8 pages.
    [43]
    Abdullahi Chowdhury, Gour Karmakar, and Joarder Kamruzzaman. 2019. The co-evolution of cloud and IoT applications: Recent and future trends. In Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization. IGI Global, 213--234.
    [44]
    Federico Concone, Giuseppe Lo Re, and Marco Morana. 2019. A fog-based application for human activity recognition using personal smart devices. ACM Transactions on Internet Technology 19, 2 (March 2019), Article 20, 20 pages.
    [45]
    G. Cristescu, R. Dobrescu, O. Chenaru, and G. Florea. 2019. DEW: A new edge computing component for distributed dynamic networks. In Proceedings of the 2019 22nd International Conference on Control Systems and Computer Science (CSCS’19). 547--551.
    [46]
    L. Dang, M. Dong, K. Ota, J. Wu, J. Li, and G. Li. 2018. Resource-efficient secure data sharing for information centric e-health system using fog computing. In Proceedings of the 2018 IEEE International Conference on Communications (ICC’18). 1--6.
    [47]
    A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya. 2016. Fog computing: Principles, architectures, and applications. In Internet of Things: Principles and Paradigms. Morgan Kaufmann, 61--75.
    [48]
    Jean Lucas de Souza Toniolli and Brigitte Jaumard. 2019. Resource allocation for multiple workflows in cloud-fog computing systems. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC’19 Companion). ACM, New York, NY, 77--84.
    [49]
    S. Dehnavi, H. R. Faragardi, M. Kargahi, and T. Fahringer. 2019. A reliability-aware resource provisioning scheme for real-time industrial applications in a Fog-integrated smart factory. Microprocessors and Microsystems 70 (2019), 1--14.
    [50]
    R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang. 2016. Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet of Things Journal 3, 6 (Dec. 2016), 1171--1181.
    [51]
    Ruimiao Ding, Xuejun Li, Xiao Liu, and Jia Xu. 2019. A cost-effective time-constrained multi-workflow scheduling strategy in fog computing. In Service-Oriented Computing—ICSOC 2018 Workshops. Lecture Notes in Computer Science, Vol. 11434. Springer, 194--207.
    [52]
    T. Djemai, P. Stolf, T. Monteil, and J. Pierson. 2019. A discrete particle swarm optimization approach for energy-efficient IoT services placement over fog infrastructures. In Proceedings of the 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC’19). 32--40.
    [53]
    J. Du, L. Zhao, J. Feng, and X. Chu. 2018. Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on Communications 66, 4 (April 2018), 1594--1608.
    [54]
    Mohammed S. Elbamby, Mehdi Bennis, Walid Saad, Matti Latva-Aho, and Choong Seon Hong. 2018. Proactive edge computing in fog networks with latency and reliability guarantees. EURASIP Journal on Wireless Communications and Networking 2018, 1 (Aug. 2018), 209.
    [55]
    Olamilekan Fadahunsi and Muthucumaru Maheswaran. 2019. Locality sensitive request distribution for fog and cloud servers. Service Oriented Computing and Applications 13, 2 (June 2019), 127--140.
    [56]
    A. J. Fahs and G. Pierre. 2019. Proximity-aware traffic routing in distributed fog computing platforms. In Proceedings of the 2019 19th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGRID’19). 478--487.
    [57]
    J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam. 2017. Deadline-aware task scheduling in a tiered IoT infrastructure. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM’17). 1--7.
    [58]
    Weidong Fang, Wuxiong Zhang, Wei Chen, Yang Liu, and Chaogang Tang. 2019. TMSRS: Trust management-based secure routing scheme in industrial wireless sensor network with fog computing. Wireless Networks 26 (Sept. 2019), 3169--3182.
    [59]
    Peter Farhat, Hani Sami, and Azzam Mourad. 2019. Reinforcement R-learning model for time scheduling of on-demand fog placement. Journal of Supercomputing 76 (Oct. 2019), 388--410.
    [60]
    C. Fiandrino, N. Allio, D. Kliazovich, P. Giaccone, and P. Bouvry. 2019. Profiling performance of application partitioning for wearable devices in mobile cloud and fog computing. IEEE Access 7 (2019), 12156--12166.
    [61]
    Sonja Filiposka, Anastas Mishev, and Katja Gilly. 2019. Mobile-aware dynamic resource management for edge computing. Transactions on Emerging Telecommunications Technologies 30, 6 (2019), e3626.
    [62]
    K. Fizza, N. Auluck, O. Rana, and L. Bittencourt. 2018. PASHE: Privacy aware scheduling in a heterogeneous fog environment. In Proceedings of the 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud’18). 333--340.
    [63]
    Ahmed A. A. Gad-Elrab and Amin Y. Noaman. 2020. A two-tier bipartite graph task allocation approach based on fuzzy clustering in cloud--fog environment. Future Generation Computer Systems 103 (2020), 79--90.
    [64]
    Pegah Gazori, Dadmehr Rahbari, and Mohsen Nickray. 2019. Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Future Generation Computer Systems 110 (2019), 1098--1115.
    [65]
    Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. 2019. Resource management approaches in fog computing: A comprehensive review. Journal of Grid Computing 18 (2019), 1--42.
    [66]
    S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya. 2019. Mobi-IoST: Mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Transactions on Network Science and Engineering. Early Access. September 16, 2019.
    [67]
    Nam Ky Giang, Rodger Lea, and Victor C. M. Leung. 2020. Developing applications in large scale, dynamic fog computing: A case study. Software: Practice and Experience 50, 5 (2020), 519--532.
    [68]
    Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya. 2019. A fog-driven dynamic resource allocation technique in ultra dense femtocell networks. Journal of Network and Computer Applications 145, 1 (2019), 102407.
    [69]
    Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems 29, 7 (2013), 1645--1660.
    [70]
    Carlos Guerrero, Isaac Lera, and Carlos Juiz. 2019. A lightweight decentralized service placement policy for performance optimization in fog computing. Journal of Ambient Intelligence and Humanized Computing 10, 6 (June 2019), 2435--2452.
    [71]
    M. A. Hassan, M. Xiao, Q. Wei, and S. Chen. 2015. Help your mobile applications with fog computing. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops’15). 1--6.
    [72]
    J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang. 2018. Multitier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet of Things Journal 5, 2 (April 2018), 677--686.
    [73]
    Xiang He, Zhiying Tu, Xiaofei Xu, and Zhongjie Wang. 2019. Re-deploying microservices in edge and cloud environment for the optimization of user-perceived service quality. In Service-Oriented Computing, S. Yangui, I. B. Rodriguez, K. Drira, and Z. Tari (Eds.). Springer International Publishing, Cham, Switzerland, 555--560.
    [74]
    Cheol-Ho Hong and Blesson Varghese. 2018. Resource management in fog/edge computing: A survey. arXiv:1810.00305. http://arxiv.org/abs/1810.00305
    [75]
    Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. 2017. Survey on fog computing: Architecture, key technologies, applications and open issues. Journal of Network and Computer Applications 98 (2017), 27--42.
    [76]
    C. Huang and K. Xu. 2016. Reliable realtime streaming in vehicular cloud-fog computing networks. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC’16). 1--6.
    [77]
    Tiansheng Huang, Weiwei Lin, Yin Li, LiGang He, and ShaoLiang Peng. 2019. A latency-aware multiple data replicas placement strategy for fog computing. Journal of Signal Processing Systems 91, 10 (Oct. 2019), 1191--1204.
    [78]
    S. Imai, C. A. Varela, and S. Patterson. 2018. A performance study of geo-distributed IoT data aggregation for fog computing. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion. 278--283.
    [79]
    IoT for All. 2018. The Big Three Make a Play for the Fog. Retrieved April 8, 2020 from https://www.iotforall.com/big-three-make-play-fog/.
    [80]
    Bushra Jamil, Mohammad Shojafar, Israr Ahmed, Atta Ullah, Kashif Munir, and Humaira Ijaz. 2019. A job scheduling algorithm for delay and performance optimization in fog computing. Concurrency and Computation: Practice and Experience 32, 7 (2019), e5581.
    [81]
    T. Jeong, J. Chung, J. W. Hong, and S. Ha. 2017. Towards a distributed computing framework for Fog. In Proceedings of the 2017 IEEE Fog World Congress (FWC’17). 1--6.
    [82]
    Y. Jiang, Y. Chen, S. Yang, and C. Wu. 2019. Energy-efficient task offloading for time-sensitive applications in fog computing. IEEE Systems Journal 13, 3 (Sept. 2019), 2930--2941.
    [83]
    S. Josilo and G. Dan. 2019. Decentralized algorithm for randomized task allocation in fog computing systems. IEEE/ACM Transactions on Networking 27, 1 (Feb. 2019), 85--97.
    [84]
    Muhammad Babar Kamal, Nadeem Javaid, Syed Aon Ali Naqvi, Hanan Butt, Talha Saif, and Muhammad Daud Kamal. 2019. Heuristic min-conflicts optimizing technique for load balancing on fog computing. In Advances in Intelligent Networking and Collaborative Systems, F. Xhafa, L. Barolli, and M.Greguš (Eds.). Springer International Publishing, Cham, Switzerland, 207--219.
    [85]
    A. Karamoozian, A. Hafid, and E. M. Aboulhamid. 2019. On the fog-cloud cooperation: How fog computing can address latency concerns of IoT applications. In Proceedings of the 4th International Conference on Fog and Mobile Edge Computing. 166--172.
    [86]
    Firat Karatas and Ibrahim Korpeoglu. 2019. Fog-based data distribution service (F-DAD) for Internet of Things (IoT) applications. Future Generation Computer Systems 93 (2019), 156--169.
    [87]
    P. Kayal and J. Liebeherr. 2019. Autonomic service placement in fog computing. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM’19). 1--9.
    [88]
    Bongjun Kim, Seonyeong Heo, Gyeongmin Lee, Seungbin Song, Jong Kim, and Hanjun Kim. 2019. Spinal code: Automatic code extraction for near-user computation in fogs. In Proceedings of the 28th International Conference on Compiler Construction (CC’19). ACM, New York, NY, 87--98.
    [89]
    Won-Suk Kim and Sang-Hwa Chung. 2018. User incentive model and its optimization scheme in user-participatory fog computing environment. Computer Networks 145 (2018), 76--88.
    [90]
    Guenter I. Klas. 2015. Fog computing and mobile edge cloud gain momentum Open Fog Consortium, ETSI MEC and cloudlets. Retrieved 8 April, 2020 from https://yucianga.info/?p=938.
    [91]
    Frank Alexander Kraemer, Anders Eivind Braten, Nattachart Tamkittikhun, and David Palma. 2017. Fog computing in healthcare—A review and discussion. IEEE Access 5 (2017), 9206--9222.
    [92]
    G. Lee, W. Saad, and M. Bennis. 2019. An online optimization framework for distributed fog network formation with minimal latency. IEEE Transactions on Wireless Communications 18, 4 (April 2019), 2244--2258.
    [93]
    I. Lera, C. Guerrero, and C. Juiz. 2019. Availability-aware service placement policy in fog computing based on graph partitions. IEEE Internet of Things Journal 6, 2 (April 2019), 3641--3651.
    [94]
    Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. 2018a. Edge-oriented computing paradigms: A survey on architecture design and system management. ACM Computing Surveys 51, 2 (2018), 39.
    [95]
    Changlong Li, Hang Zhuang, Qingfeng Wang, and Xuehai Zhou. 2018b. SSLB: Self-similarity-based load balancing for large-scale fog computing. Arabian Journal for Science and Engineering 43, 12 (Dec. 2018), 7487--7498.
    [96]
    Guangshun Li, Jiahe Yan, Lu Chen, Junhua Wu, Qingyan Lin, and Ying Zhang. 2019c. Energy consumption optimization with a delay threshold in cloud-fog cooperation computing. IEEE Access 7 (2019), 159688--159697.
    [97]
    He Li, Kaoru Ota, and Mianxiong Dong. 2019b. Deep reinforcement scheduling for mobile crowdsensing in fog computing. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 21, 18 pages.
    [98]
    Lei Li, Quansheng Guan, Lianwen Jin, and Mian Guo. 2019a. Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7 (2019), 9912--9925.
    [99]
    Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. 2017. Coding for distributed fog computing. IEEE Communications Magazine 55, 4 (2017), 34--40.
    [100]
    Liqing Liu, Zheng Chang, Xijuan Guo, and T. Ristaniemi. 2017. Multi-objective optimization for computation offloading in mobile-edge computing. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC’17). 832--837.
    [101]
    Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao. 2019. DATS: Dispersive stable task scheduling in heterogeneous fog networks. IEEE Internet of Things Journal 6, 2 (April 2019), 3423--3436.
    [102]
    J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, and H. Luo. 2019. Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT. Future Generation Computer Systems 97 (2019), 50--60.
    [103]
    H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu. 2013. Reliability in the utility computing era: Towards reliable Fog computing. In Proceedings of the 2013 20th International Conference on Systems, Signals, and Image Processing (IWSSIP’13). 43--46.
    [104]
    Mukhtar M. E. Mahmoud, Joel J. P. C. Rodrigues, Kashif Saleem, Jalal Al-Muhtadi, Neeraj Kumar, and Valery Korotaev. 2018. Towards energy-aware fog-enabled cloud of things for healthcare. Computers 8 Electrical Engineering 67 (2018), 58--69.
    [105]
    Md. Redowan Mahmud, Mahbuba Afrin, Md. Abdur Razzaque, Mohammad Mehedi Hassan, Abdulhameed Alelaiwi, and Majed Alrubaian. 2016. Maximizing quality of experience through context-aware mobile application scheduling in cloudlet infrastructure. Software: Practice and Experience 46, 11 (2016), 1525--1545.
    [106]
    Redowan Mahmud, Fernando Luiz Koch, and Rajkumar Buyya. 2018a. Cloud-fog interoperability in IoT-enabled healthcare solutions. In Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN’18). ACM, New York, NY, Article 32, 10 pages.
    [107]
    Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018b. Fog computing: A taxonomy, survey and future directions. In Internet of Everything. Springer, 103--130.
    [108]
    Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2018c. Latency-aware application module management for fog computing environments. ACM Transactions on Internet Technology 19, 1 (Nov. 2018), Article 9, 21 pages.
    [109]
    Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2019a. Edge affinity-based management of applications in fog computing environments. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing (UCC’19). ACM, New York, NY, 1--10.
    [110]
    Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2019b. Quality of experience (QoE)-aware placement of applications in Fog computing environments. Journal of Parallel and Distributed Computing 132 (2019), 190--203.
    [111]
    Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2020. Profit-aware application placement for integrated Fog--Cloud computing environments. Journal of Parallel and Distributed Computing 135 (2020), 177--190.
    [112]
    R. Mahmud, A. N. Toosi, K. Rao, and R. Buyya. 2019. Context-aware placement of Industry 4.0 applications in fog computing environments. IEEE Transactions on Industrial Informatics. Early Access. November 8, 2019.
    [113]
    Mirjana Maksimović. 2018. Implementation of fog computing in IoT-based healthcare system. JITA—Journal of Information Technology and Applications 14, 2 (2018), 100--107.
    [114]
    B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades. 2015. The power of models: Modeling power consumption for IoT devices. IEEE Sensors Journal 15, 10 (Oct. 2015), 5777--5789.
    [115]
    Jakob Mass, Chii Chang, and Satish Narayana Srirama. 2018. Context-aware edge process management for mobile thing-to-fog environment. In Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings (ECSA’18). ACM, New York, NY, Article 44, 7 pages.
    [116]
    Houssemeddine Mazouzi, Nadjib Achir, and Khaled Boussetta. 2019. DM2-ECOP: An efficient computation offloading policy for multi-user multi-cloudlet mobile edge computing environment. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 24, 24 pages.
    [117]
    S. Meixner, D. Schall, F. Li, V. Karagiannis, S. Schulte, and K. Plakidas. 2019. Automatic application placement and adaptation in cloud-edge environments. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’19). 1001--1008.
    [118]
    Eduard Melnik, Anna Klimenko, and Vladislav Klimenko. 2019. A recovery technique for the fog-computing-based information and control systems. In Intelligent Systems in Cybernetics and Automation Control Theory, R. Silhavy, P. Silhavy, and Z. Prokopova (Eds.). Springer International Publishing, Cham, Switzerland, 216--227.
    [119]
    Moumita Mishra, Sayan Kumar Roy, Anwesha Mukherjee, Debashis De, Soumya K. Ghosh, and Rajkumar Buyya. 2019. An energy-aware multi-sensor geo-fog paradigm for mission critical applications. Journal of Ambient Intelligence and Humanized Computing. Early Access. September 12, 2019.
    [120]
    S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B. Sahoo, and E. Dutkiewicz. 2018. Sustainable service allocation using a metaheuristic technique in a fog server for industrial applications. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4497--4506.
    [121]
    N. Mohamed, J. Al-Jaroodi, and I. Jawhar. 2019. Towards fault tolerant fog computing for IoT-based smart city applications. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC’19). 0752--0757.
    [122]
    C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad, N. T. Jahromi, and R. H. Glitho. 2019. Application component placement in NFV-based hybrid cloud/fog systems with mobile fog nodes. IEEE Journal on Selected Areas in Communications 37, 5 (May 2019), 1130--1143.
    [123]
    Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J. Morrow, and Paul A. Polakos. 2017. A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys 8 Tutorials 20, 1 (2017), 416--464.
    [124]
    M. Mtshali, H. Kobo, S. Dlamini, M. Adigun, and P. Mudali. 2019. Multi-objective optimization approach for task scheduling in fog computing. In Proceedings of the International Conference on Advances in Big Data, Computing, and Data Communication Systems. 1--6.
    [125]
    Mithun Mukherjee, Lei Shu, and Di Wang. 2018. Survey of fog computing: Fundamental, network applications, and research challenges. IEEE Communications Surveys 8 Tutorials 20, 3 (2018), 1826--1857.
    [126]
    Mohammed Islam NAAS, Laurent Lemarchand, Jalil Boukhobza, and Philippe Raipin. 2018. A graph partitioning-based heuristic for runtime IoT data placement strategies in a fog infrastructure. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC’18). ACM, New York, NY, 767--774.
    [127]
    Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Longxiang Gao, Yong Xiang, and Rajiv Ranjan. 2018. Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 6 (2018), 47980--48009.
    [128]
    Biji Nair and Mary Saira Bhanu Somasundaram. 2019. Overload prediction and avoidance for maintaining optimal working condition in a fog node. Computers 8 Electrical Engineering 77 (2019), 147--162.
    [129]
    Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou, and A. Y. Zomaya. 2017. Adaptive energy-aware computation offloading for cloud of things systems. IEEE Access 5 (2017), 23947--23957.
    [130]
    Mansoor Nasir, Khan Muhammad, Jaime Lloret, Arun Kumar Sangaiah, and Muhammad Sajjad. 2019. Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal on Parallel and Distributed Computing 126 (2019), 161--170.
    [131]
    Shubha Brata Nath, Harshit Gupta, Sandip Chakraborty, and Soumya K. Ghosh. 2018. A survey of fog computing and communication: Current researches and future directions. arXiv:1804.04365. arxiv:1804.04365 http://arxiv.org/abs/1804.04365
    [132]
    T. Nazar, N. Javaid, M. Waheed, A. Fatima, H. Bano, and N. Ahmed. 2019. Modified shortest job first for load balancing in cloud-fog computing. In Advances on Broadband and Wireless Computing, Communication and Applications, L. Barolli, F.-Y. Leu, T. Enokido, and H.-C. Chen (Eds.). Springer International Publishing, Cham, Switzerland, 63--76.
    [133]
    Y. Niu, Y. Liu, Y. Li, Z. Zhong, B. Ai, and P. Hui. 2018. Mobility-aware caching scheduling for fog computing in mmWave band. IEEE Access 6 (2018), 69358--69370.
    [134]
    Hassan Noura, Ola Salman, Ali Chehab, and Raphael Couturier. 2019. Preserving data security in distributed fog computing. Ad Hoc Networks 94 (2019), 101937.
    [135]
    Ryuji Oma, Shigenari Nakamura, Dilawaer Duolikun, Tomoya Enokido, and Makoto Takizawa. 2019. Fault-tolerant fog computing models in the IoT. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing, F. Xhafa, F.-Y. Leu, M. Ficco, and C.-T. Yang (Eds.). Springer International Publishing, Cham, Switzerland, 14--25.
    [136]
    Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing Lu, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. 2017. From cloud to fog computing: A review and a conceptual live VM migration framework. IEEE Access 5 (2017), 8284--8300.
    [137]
    Umar Ozeer, Xavier Etchevers, Loïc Letondeur, François-Gaël Ottogalli, Gwen Salaün, and Jean-Marc Vincent. 2018. Resilience of stateful IoT applications in a dynamic fog environment. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services. ACM, New York, NY, 332--341.
    [138]
    Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya. 2019. Microservices-based IoT application placement within heterogeneous and resource constrained fog computing environments. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing. ACM, New York, NY, 71--81.
    [139]
    X. Pang, Z. Bie, and X. Lin. 2018. Access point decoding coded MapReduce for tree fog network. In Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC’18). 384--388.
    [140]
    Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, and Athanasios V. Vasilakos. 2017. Fog computing for sustainable smart cities: A survey. ACM Computing Surveys 50, 3 (2017), 32.
    [141]
    S. Prabavathy, K. Sundarakantham, S. Mercy Shalinie, and K. Narasimha Mallikarjunan. 2019. Fog computing-based autonomic security approach to Internet of Things applications. In Computational Intelligence: Theories, Applications and Future Directions—Volume II, N. K. Verma and A. K. Ghosh (Eds.). Springer Singapore, Singapore, 3--14.
    [142]
    J. S. Preden, K. Tammemae, A. Jantsch, M. Leier, A. Riid, and E. Calis. 2015. The benefits of self-awareness and attention in fog and mist computing. Computer 48, 7 (July 2015), 37--45.
    [143]
    Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and Omer Rana. 2019. Fog computing for the Internet of Things: A survey. ACM Transactions on Internet Technology 19, 2 (2019), 18.
    [144]
    C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino. 2018. Companion fog computing: Supporting things mobility through container migration at the edge. In Proceedings of the IEEE International Conference on Smart Computing. 97--105.
    [145]
    Dadmehr Rahbari and Mohsen Nickray. 2019. Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Networking and Applications 13 (Feb. 2019), 104--122.
    [146]
    M. R. Ramli, P. T. Daely, J. Lee, and D. Kim. 2019. Bio-inspired service provisioning scheme for fog-based Industrial Internet of Things. In Proceedings of the 24th IEEE International Conference on Emerging Technologies and Factory Automation. 1661--1664.
    [147]
    Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2018. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems 78 (2018), 680--698.
    [148]
    J. Santos, T. Wauters, B. Volckaert, and F. De Turck. 2019. Towards network-aware resource provisioning in Kubernetes for fog computing applications. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft’19). 351--359.
    [149]
    S. Sarkar, S. Chatterjee, and S. Misra. 2015. Assessment of the suitability of fog computing in the context of Internet of Things. IEEE Transactions on Cloud Computing PP, 99 (2015), 1.
    [150]
    M. Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (Jan. 2017), 30--39.
    [151]
    Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and Beate Ottenwälder. 2016. Incremental deployment and migration of geo-distributed situation awareness applications in the fog. In Proceedings of the 10th ACM International Conference on Distributed and Event-Based Systems (DEBS’16). ACM, New York, NY, 258--269.
    [152]
    H. Shah-Mansouri and V. W. S. Wong. 2018. Hierarchical fog-cloud computing for IoT systems: A computation offloading game. IEEE Internet of Things Journal 5, 4 (Aug. 2018), 3246--3257.
    [153]
    Shivi Sharma and Hemraj Saini. 2019. A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustainable Computing: Informatics and Systems 24 (2019), 100355.
    [154]
    W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (Oct. 2016), 637--646.
    [155]
    W. Shi and S. Dustdar. 2016. The promise of edge computing. Computer 49, 5 (May 2016), 78--81.
    [156]
    Syed Noorulhassan Shirazi, Antonios Gouglidis, Arsham Farshad, and David Hutchison. 2017. The extended cloud: Review and analysis of mobile edge computing and fog from a security and resilience perspective. IEEE Journal on Selected Areas in Communications 35, 11 (2017), 2586--2595.
    [157]
    Leila Shooshtarian, Dapeng Lan, and Amir Taherkordi. 2019. A clustering-based approach to efficient resource allocation in fog computing. In Pervasive Systems, Algorithms and Networks, C. Esposito, J. Hong, and K.-K. Raymond Choo (Eds.). Springer International Publishing, Cham, Switzerland, 207--224.
    [158]
    Anil Singh and Nitin Auluck. 2019. Load balancing aware scheduling algorithms for fog networks. Software: Practice and Experience. Early Access. June 18, 2019.
    [159]
    Simar Preet Singh, Anju Sharma, and Rajesh Kumar. 2019. Design and exploration of load balancers for fog computing using fuzzy logic. Simulation Modelling Practice and Theory 101 (2019), 102017.
    [160]
    Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner. 2017. Optimized IoT service placement in the fog. Service Oriented Computing and Applications 11, 4 (Dec. 2017), 427--443.
    [161]
    Z. Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu. 2018. A secure content caching scheme for disaster backup in fog computing enabled mobile social networks. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4579--4589.
    [162]
    Huaiying Sun, Huiqun Yu, Guisheng Fan, and Liqiong Chen. 2019. Energy and time efficient task offloading and resource allocation on the generic IoT-fog-cloud architecture. Peer-to-Peer Networking and Applications 13 (July 2019), 548--563.
    [163]
    M. Suter, R. Eidenbenz, Y. Pignolet, and A. Singla. 2019. Fog application allocation for automation systems. In Proceedings of the 2019 IEEE International Conference on Fog Computing (ICFC’19). 97--106.
    [164]
    Madiha H. Syed, Eduardo B. Fernandez, and Mohammad Ilyas. 2016. A pattern for fog computing. In Proceedings of the 10th Travelling Conference on Pattern Languages of Programs (VikingPLoP’16). ACM, New York, NY, Article 13, 10 pages.
    [165]
    Shreshth Tuli, Redowan Mahmud, Shikhar Tuli, and Rajkumar Buyya. 2019. FogBus: A blockchain-based lightweight framework for edge and fog computing. Journal of Systems and Software 154 (2019), 22--36.
    [166]
    Dimitrios Tychalas and Helen Karatza. 2020. A scheduling algorithm for a fog computing system with bag-of-tasks jobs: Simulation and performance evaluation. Simulation Modelling Practice and Theory 98 (2020), 101982.
    [167]
    Minoru Uehara. 2018. Mist Computing: Linking Cloudlet to Fogs. Springer International Publishing, Cham, Switzerland, 201--213.
    [168]
    P. Varshney and Y. Simmhan. 2017. Demystifying fog computing: Characterizing architectures, applications and abstractions. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC’17). 115--124.
    [169]
    Salvatore Venticinque and Alba Amato. 2019. A methodology for deployment of IoT application in fog. Journal of Ambient Intelligence and Humanized Computing 10, 5 (May 2019), 1955--1976.
    [170]
    N. Verba, K. Chao, J. Lewandowski, N. Shah, A. James, and F. Tian. 2019. Modeling Industry 4.0 based fog computing environments for application analysis and deployment. Future Generation Computer Systems 91 (2019), 48--60.
    [171]
    Paola G. Vinueza Naranjo, Enzo Baccarelli, and Michele Scarpiniti. 2018. Design and energy-efficient resource management of virtualized networked fog architectures for the real-time support of IoT applications. Journal of Supercomputing 74, 6 (June 2018), 2470--2507.
    [172]
    Duc-Nghia Vu, Nhu-Ngoc Dao, Yongwoon Jang, Woongsoo Na, Young-Bin Kwon, Hyunchul Kang, Jason J. Jung, and Sungrae Cho. 2019. Joint energy and latency optimization for upstream IoT offloading services in fog radio access networks. Transactions on Emerging Telecommunications Technologies 30, 4 (2019), e3497.
    [173]
    D. Wang, Z. Liu, X. Wang, and Y. Lan. 2019a. Mobility-aware task offloading and migration schemes in fog computing networks. IEEE Access 7 (2019), 43356--43368.
    [174]
    T. Wang, J. Zhou, A. Liu, M. Z. A. Bhuiyan, G. Wang, and W. Jia. 2019. Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet of Things Journal 6, 3 (June 2019), 4272--4282.
    [175]
    Wei Wang, Guanyu Wu, Zhe Guo, Liang Qian, Lianghui Ding, and Feng Yang. 2019. Data scheduling and resource optimization for fog computing architecture in Industrial IoT. In Distributed Computing and Internet Technology, G. Fahrnberger, S. Gopinathan, and L. Parida (Eds.). Springer International Publishing, Cham, Switzerland, 141--149.
    [176]
    X. Wang, L. Wang, Y. Li, and K. Gai. 2018. Privacy-aware efficient fine-grained data access control in Internet of Medical Things based fog computing. IEEE Access 6 (2018), 47657--47665.
    [177]
    Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo. 2019b. Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications. IEEE Transactions on Industrial Informatics 15, 2 (Feb. 2019), 976--986.
    [178]
    Mohammad Wazid, Ashok Kumar Das, Neeraj Kumar, and Athanasios V. Vasilakos. 2019. Design of secure key management and user authentication scheme for fog computing services. Future Generation Computer Systems 91 (2019), 475--492.
    [179]
    P. Wiener, P. Zehnder, and D. Riemer. 2019. Towards context-aware and dynamic management of stream processing pipelines for fog computing. In Proceedings of the 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC’19). 1--6.
    [180]
    C. Wu and L. Wang. 2019. A deadline-aware estimation of distribution algorithm for resource scheduling in fog computing systems. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC’19). 660--666.
    [181]
    Y. Xiao and M. Krunz. 2018. Distributed optimization for energy-efficient fog computing in the Tactile Internet. IEEE Journal on Selected Areas in Communications 36, 11 (Nov. 2018), 2390--2400.
    [182]
    M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Nemirovsky. 2014. Key ingredients in an IoT recipe: Fog computing, cloud computing, and more fog computing. In Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’14). 325--329.
    [183]
    J. Yao and N. Ansari. 2019. QoS-aware fog resource provisioning and mobile device power control in IoT networks. IEEE Transactions on Network and Service Management 16, 1 (March 2019), 167--175.
    [184]
    Y. Yao, X. Chang, J. Misic, and V. Misic. 2019. Reliable and secure vehicular fog service provision. IEEE Internet of Things Journal 6, 1 (Feb. 2019), 734--743.
    [185]
    L. Yin, J. Luo, and H. Luo. 2018. Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4712--4721.
    [186]
    Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2019. All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture 98 (2019), 289--330.
    [187]
    A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue. 2018. On reducing IoT service delay via fog offloading. IEEE Internet of Things Journal 5, 2 (April 2018), 998--1010.
    [188]
    L. Yu, T. Jiang, and Y. Zou. 2017. Fog-assisted operational cost reduction for cloud data centers. IEEE Access 5 (2017), 13578--13586.
    [189]
    J. Yue, M. Xiao, and Z. Pang. 2018. Distributed fog computing based on batched sparse codes for industrial control. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4683--4691.
    [190]
    W. Yanez, R. Mahmud, R. Bahsoon, Y. Zhang, and R. Buyya. 2020. Data allocation mechanism for Internet-of-Things systems with blockchain. IEEE Internet of Things Journal 7, 4 (2020), 3509--3522.
    [191]
    Deze Zeng, Lin Gu, and Hong Yao. 2018. Towards energy efficient service composition in green energy powered cyber-physical fog systems. Future Generation Computer Systems.
    [192]
    M. Zeng, Y. Li, K. Zhang, M. Waqas, and D. Jin. 2018. Incentive mechanism design for computation offloading in heterogeneous fog computing: A contract-based approach. In Proceedings of the IEEE International Conference on Communications (ICC’18). 1--6.
    [193]
    G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, and Y. Yang. 2019a. DOTS: Delay-optimal task scheduling among voluntary nodes in fog networks. IEEE Internet of Things Journal 6, 2 (April 2019), 3533--3544.
    [194]
    G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M. Zhou. 2019b. FEMTO: Fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet of Things Journal 6, 3 (June 2019), 4388--4400.
    [195]
    PeiYun Zhang, MengChu Zhou, and Giancarlo Fortino. 2018. Security and trust issues in fog computing: A survey. Future Generation Computer Systems 88 (2018), 16--27.
    [196]
    Dongcheng Zhao, Gang Sun, Dan Liao, Shizhong Xu, and Victor Chang. 2019. Mobile-aware service function chain migration in cloud--fog computing. Future Generation Computer Systems 96 (2019), 591--604.
    [197]
    S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C. Wang. 2018. FEMOS: Fog-enabled multitier operations scheduling in dynamic wireless networks. IEEE Internet of Things Journal 5, 2 (April 2018), 1169--1183.
    [198]
    H. Zheng, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief. 2019b. Fog-assisted multiuser SWIPT networks: Local computing or offloading. IEEE Internet of Things Journal 6, 3 (June 2019), 5246--5264.
    [199]
    Q. Zheng, J. Jin, T. Zhang, J. Li, L. Gao, and Y. Xiang. 2019a. Energy-sustainable fog system for mobile web services in infrastructure-less environments. IEEE Access 7 (2019), 161318--161328.
    [200]
    Jingya Zhou, Jianxi Fan, Jin Wang, and Juncheng Jia. 2019. Dynamic service deployment for budget-constrained mobile edge computing. Concurrency and Computation: Practice and Experience (2019), e5436.
    [201]
    Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez. 2019. Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach. IEEE Transactions on Vehicular Technology 68, 4 (April 2019), 3113--3125.
    [202]
    C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Yia-Jaaski. 2019. Folo: Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet of Things Journal 6, 3 (June 2019), 4150--4161.

    Cited By

    View all
    • (2024)Enhancing Rainfall Prediction Accuracy Through Fog ComputingAdvanced Applications in Osmotic Computing10.4018/979-8-3693-1694-8.ch004(53-72)Online publication date: 29-Mar-2024
    • (2024)Latency Aware Intelligent Task Offloading Scheme for Edge-Fog-Cloud Computing – a ReviewИнтеллектуальная схема распределения задач с учетом задержек вычислений в Edge-Fog-Cloud – обзорInformatics and AutomationИнформатика и автоматизация10.15622/ia.23.1.1023:1(284-318)Online publication date: 11-Jan-2024
    • (2024)AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges, and Future PerspectivesIEEE Communications Surveys & Tutorials10.1109/COMST.2023.333801526:1(619-669)Online publication date: Sep-2025
    • Show More Cited By

    Index Terms

    1. Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 53, Issue 4
        July 2021
        831 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3410467
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 22 July 2020
        Accepted: 01 May 2020
        Revised: 01 April 2020
        Received: 01 January 2020
        Published in CSUR Volume 53, Issue 4

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Fog computing
        2. Internet of Things
        3. application architecture
        4. application maintenance
        5. application placement

        Qualifiers

        • Survey
        • Research
        • Refereed

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)180
        • Downloads (Last 6 weeks)9
        Reflects downloads up to 11 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Enhancing Rainfall Prediction Accuracy Through Fog ComputingAdvanced Applications in Osmotic Computing10.4018/979-8-3693-1694-8.ch004(53-72)Online publication date: 29-Mar-2024
        • (2024)Latency Aware Intelligent Task Offloading Scheme for Edge-Fog-Cloud Computing – a ReviewИнтеллектуальная схема распределения задач с учетом задержек вычислений в Edge-Fog-Cloud – обзорInformatics and AutomationИнформатика и автоматизация10.15622/ia.23.1.1023:1(284-318)Online publication date: 11-Jan-2024
        • (2024)AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges, and Future PerspectivesIEEE Communications Surveys & Tutorials10.1109/COMST.2023.333801526:1(619-669)Online publication date: Sep-2025
        • (2024)A Framework for Cognitive, Decentralized Container OrchestrationIEEE Access10.1109/ACCESS.2024.340686112(79978-80008)Online publication date: 2024
        • (2024)An Energy-Aware Task Offloading and Load Balancing for Latency-Sensitive IoT Applications in the Fog-Cloud ContinuumIEEE Access10.1109/ACCESS.2024.335712212(14334-14349)Online publication date: 2024
        • (2024)Deadline and Energy-Aware Application Module Placement in Fog-Cloud SystemsIEEE Access10.1109/ACCESS.2024.335017112(5284-5294)Online publication date: 2024
        • (2024)Using fog computing (FC) and optimization techniques for tasks migration and resource allocation in the internet of things (IoT)International Journal of Computers and Applications10.1080/1206212X.2023.228725746:2(113-121)Online publication date: 23-Jan-2024
        • (2024)Modern computing: Vision and challengesTelematics and Informatics Reports10.1016/j.teler.2024.10011613(100116)Online publication date: Mar-2024
        • (2024)Microservices and serverless functions—lifecycle, performance, and resource utilisation of edge based real-time IoT analyticsFuture Generation Computer Systems10.1016/j.future.2024.02.006155:C(204-218)Online publication date: 1-Jun-2024
        • (2024)Enhancing privacy and security in IoT-based smart grid system using encryption-based fog computingAlexandria Engineering Journal10.1016/j.aej.2024.05.085102(66-74)Online publication date: Sep-2024
        • Show More Cited By

        View Options

        Get Access

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media