Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3407197.3407219acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiconsConference Proceedingsconference-collections
short-paper
Public Access

Modeling epidemic spread with spike-based models

Published: 28 July 2020 Publication History

Abstract

The Susceptible-Infected-Recovered/Removed model is a standard model for epidemiological spread of disease through vulnerable populations. In this paper we show how SIR network dynamics can be implemented using spiking neurons.

References

[1]
James B. Aimone, Kathleen E. Hamilton, Susan Mniszewski, Leah Reeder, Catherine D. Schuman, and William M. Severa. 2018. Non-Neural Network Applications for Spiking Neuromorphic Hardware. In Proceedings of the Third International Workshop on Post Moore’s Era Supercomputing, Jeffery S. Vetter and Satoshi Matsuoka (Eds.). Future Technologies Group, Oak Ridge National Laboratory, Oak Ridge, TN, 24–26. Issue FTGTR-2018-11.
[2]
Daniel F Bernardes, Matthieu Latapy, and Fabien Tarissan. 2012. Relevance of sir model for real-world spreading phenomena: Experiments on a large-scale p2p system. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 327–334.
[3]
Ottar N Bjørnstad, Bärbel F Finkenstädt, and Bryan T Grenfell. 2002. Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecological monographs 72, 2 (2002), 169–184.
[4]
Brian J Coburn, Bradley G Wagner, and Sally Blower. 2009. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC medicine 7, 1 (2009), 30.
[5]
Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, 2018. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 1 (2018), 82–99.
[6]
Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, 2019. TrueNorth: Accelerating from zero to 64 million neurons in 10 years. Computer 52, 5 (2019), 20–29.
[7]
Duccio Fanelli and Francesco Piazza. 2020. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals 134 (2020), 109761.
[8]
Neil M Ferguson, Derek AT Cummings, Christophe Fraser, James C Cajka, Philip C Cooley, and Donald S Burke. 2006. Strategies for mitigating an influenza pandemic. Nature 442, 7101 (2006), 448–452.
[9]
Zoltán Fodor, Sándor D Katz, and Tamás G Kovacs. 2020. Why differential equation based models fail to describe the dynamics of epidemics?arXiv preprint arXiv:2004.07208(2020).
[10]
Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3 (2010), 75–174.
[11]
Santo Fortunato. 2017. Santo Fortunato’s Website: Software. https://sites.google.com/site/santofortunato/inthepress2. Accessed: 2017-05-10.
[12]
Wulfram Gerstner and Werner M Kistler. 2002. Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press.
[13]
Dan Goodman and Romain Brette. 2008. Brian: A Simulator for Spiking Neural Networks in Python. Frontiers in Neuroinformatics 2 (2008).
[14]
Kathleen E. Hamilton, Neena Imam, and Travis S. Humble. 2017. Community Detection with Spiking Neural Networks for Neuromorphic Hardware. In Proceedings of the Neuromorphic Computing Symposium (Knoxville, Tennessee) (NCS ’17). ACM, New York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/3183584.3183621
[15]
Kathleen E Hamilton, Neena Imam, and Travis S Humble. 2018. Sparse hardware embedding of spiking neuron systems for community detection. ACM Journal on Emerging Technologies in Computing Systems (JETC) 14, 4(2018), 1–13.
[16]
Kathleen E Hamilton and Leonid P Pryadko. 2014. Tight lower bound for percolation threshold on an infinite graph. Physical review letters 113, 20 (2014), 208701.
[17]
Herbert W Hethcote. 2000. The mathematics of infectious diseases. SIAM review 42, 4 (2000), 599–653.
[18]
Brian Karrer, Mark EJ Newman, and Lenka Zdeborová. 2014. Percolation on sparse networks. Physical review letters 113, 20 (2014), 208702.
[19]
Bill Kay, Prasanna Date, and Catherine D Schuman. 2020. Neuromorphic Graph Algorithms: Extracting Longest Shortest Paths and Minimum Spanning Trees. In Proceedings of the 8th Annual Neuro-inspired Computational Elements Workshop. ACM.
[20]
William Ogilvy Kermack and Anderson G McKendrick. 1927. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character 115, 772 (1927), 700–721.
[21]
Muhammad Mukaram Khan, David R Lester, Luis A Plana, A Rast, Xin Jin, Eustace Painkras, and Stephen B Furber. 2008. SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Ieee, 2849–2856.
[22]
Isack E Kibona and Cuihong Yang. 2017. SIR model of spread of Zika virus infections: ZIKV linked to microcephaly simulations. Health 9, 8 (2017), 1190–1210.
[23]
Yu A Kuznetsov and Carlo Piccardi. 1994. Bifurcation analysis of periodic SEIR and SIR epidemic models. Journal of mathematical biology 32, 2 (1994), 109–121.
[24]
Warwick J McKibbin and Roshen Fernando. 2020. The global macroeconomic impacts of COVID-19: Seven scenarios. CAMA Working Paper 19/2020. Australian National University.
[25]
Cristopher Moore and Mark EJ Newman. 2000. Epidemics and percolation in small-world networks. Physical Review E 61, 5 (2000), 5678.
[26]
Romualdo Pastor-Satorras and Alessandro Vespignani. 2001. Epidemic spreading in scale-free networks. Physical review letters 86, 14 (2001), 3200.
[27]
Catherine D Schuman, Kathleen Hamilton, Tiffany Mintz, Md Musabbir Adnan, Bon Woong Ku, Sung-Kyu Lim, and Garrett S Rose. 2019. Shortest path and neighborhood subgraph extraction on a spiking memristive neuromorphic implementation. In Proceedings of the 7th Annual Neuro-inspired Computational Elements Workshop. ACM, 3.
[28]
Catherine D. Schuman, Kathleen E. Hamilton, Tiffany Mintz, Md Musabbir Adnan, Bon Woong Ku, Sung-Kyu Lim, and Garrett S. Rose. 2018. Shortest Path and neighborhood subgraph extraction on a spiking memristive neuromorphic implementation. In Proceedings of the Third International Workshop on Post Moore’s Era Supercomputing, Jeffery S. Vetter and Satoshi Matsuoka (Eds.). Future Technologies Group, Oak Ridge National Laboratory, Oak Ridge, TN, 27–29. Issue FTGTR-2018-11.
[29]
Jae-Seung Yeom, Abhinav Bhatele, Keith Bisset, Eric Bohm, Abhishek Gupta, Laxmikant V Kale, Madhav Marathe, Dimitrios S Nikolopoulos, Martin Schulz, and Lukasz Wesolowski. 2014. Overcoming the scalability challenges of epidemic simulations on blue waters. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 755–764.
[30]
Kai Zhu and Lei Ying. 2014. Information source detection in the SIR model: A sample-path-based approach. IEEE/ACM Transactions on Networking 24, 1 (2014), 408–421.

Cited By

View all
  • (2023)Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materialsThe International Journal of High Performance Computing Applications10.1177/1094342023117853737:3-4(351-379)Online publication date: 22-Jun-2023
  • (2023)SuperNeuro: A Fast and Scalable Simulator for Neuromorphic ComputingProceedings of the 2023 International Conference on Neuromorphic Systems10.1145/3589737.3606000(1-4)Online publication date: 1-Aug-2023
  • (2023)On-Sensor Data Filtering using Neuromorphic Computing for High Energy Physics ExperimentsProceedings of the 2023 International Conference on Neuromorphic Systems10.1145/3589737.3605976(1-8)Online publication date: 1-Aug-2023
  • Show More Cited By
  1. Modeling epidemic spread with spike-based models

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICONS 2020: International Conference on Neuromorphic Systems 2020
    July 2020
    186 pages
    ISBN:9781450388511
    DOI:10.1145/3407197
    Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 July 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. epidemiological modeling
    2. neuromorphic algorithms
    3. spiking neural networks

    Qualifiers

    • Short-paper
    • Research
    • Refereed limited

    Funding Sources

    Conference

    ICONS 2020

    Acceptance Rates

    Overall Acceptance Rate 13 of 22 submissions, 59%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)119
    • Downloads (Last 6 weeks)22
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materialsThe International Journal of High Performance Computing Applications10.1177/1094342023117853737:3-4(351-379)Online publication date: 22-Jun-2023
    • (2023)SuperNeuro: A Fast and Scalable Simulator for Neuromorphic ComputingProceedings of the 2023 International Conference on Neuromorphic Systems10.1145/3589737.3606000(1-4)Online publication date: 1-Aug-2023
    • (2023)On-Sensor Data Filtering using Neuromorphic Computing for High Energy Physics ExperimentsProceedings of the 2023 International Conference on Neuromorphic Systems10.1145/3589737.3605976(1-8)Online publication date: 1-Aug-2023
    • (2023)Encoding integers and rationals on neuromorphic computers using virtual neuronScientific Reports10.1038/s41598-023-35005-x13:1Online publication date: 6-Jul-2023
    • (2022)Neuromorphic Computing is Turing-CompleteProceedings of the International Conference on Neuromorphic Systems 202210.1145/3546790.3546806(1-10)Online publication date: 27-Jul-2022
    • (2022)Neuromorphic Computing for Scientific Applications2022 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)10.1109/RSDHA56811.2022.00008(22-28)Online publication date: Nov-2022
    • (2022)Virtual Neuron: A Neuromorphic Approach for Encoding Numbers2022 IEEE International Conference on Rebooting Computing (ICRC)10.1109/ICRC57508.2022.00017(100-105)Online publication date: Dec-2022
    • (2022)Opportunities for neuromorphic computing algorithms and applicationsNature Computational Science10.1038/s43588-021-00184-y2:1(10-19)Online publication date: 31-Jan-2022
    • (2021)Neuromorphic Graph Algorithms: Cycle Detection, Odd Cycle Detection, and Max FlowInternational Conference on Neuromorphic Systems 202110.1145/3477145.3477172(1-7)Online publication date: 27-Jul-2021
    • (2021)Neuromorphic Computing for Autonomous RacingInternational Conference on Neuromorphic Systems 202110.1145/3477145.3477170(1-5)Online publication date: 27-Jul-2021
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media