Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An LSH-based Offloading Method for IoMT Services in Integrated Cloud-Edge Environment

Published: 08 January 2021 Publication History

Abstract

Benefiting from the massive available data provided by Internet of multimedia things (IoMT), enormous intelligent services requiring information of various types to make decisions are emerging. Generally, the IoMT devices are equipped with limited computing power, interfering with the process of computation-intensive services. Currently, to satisfy a wide range of service requirements, the novel computing paradigms, i.e., cloud computing and edge computing, can potentially be integrated for service accommodation. Nevertheless, the private information (i.e., location, service type, etc.) in the services is prone to spilling out during service offloading in the cloud-edge computing. To avoid privacy leakage while improving service utility, including the service response time and energy consumption for service executions, a <underline>L</underline>ocality-sensitive-hash (LSH)-based <underline>o</underline>ffloading <underline>m</underline>ethod, named LOM, is devised. Specifically, LSH is leveraged to encrypt the feature information for the services offloaded to the edge servers with the intention of privacy preservation. Eventually, comparative experiments are conducted to verify the effectiveness of LOM with respect to promoting service utility.

References

[1]
S. He and W. Wang. 2020. Multimedia upstreaming Cournot game in non-orthogonal multiple access Internet of Things. IEEE Trans. Netw. Sci. Eng. 7, 1 (2020), 398--408.
[2]
Z. Zhang, R. Sun, X. Wang, and C. Zhao. 2019. A situational analytic method for user behavior pattern in multimedia social networks. IEEE Trans. Big Data 5, 4 (2019), 520--528.
[3]
X. Zhou, W. Liang, K. I. Wang, H. Wang, L. T. Yang, and Q. Jin. 2020. Deep learning enhanced human activity recognition for Internet of Healthcare Things. IEEE Internet Things J. (2020), 1--1.
[4]
C. Singhal, C. F. Chiasserini, and C. E. Casetti. 2019. EMB: Efficient multimedia broadcast in multi-tier mobile networks. IEEE Trans. Vehic. Technol. 68, 11 (2019), 11186--11199.
[5]
X. Zhou, W. Liang, K. I. Wang, and S. Shimizu. 2019. Multi-modality behavioral influence analysis for personalized recommendations in health social media environment. IEEE Trans. Comput. Soc. Syst. 6, 5 (2019), 888--897.
[6]
J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun, and Y. Xiang. 2019. Block design-based key agreement for group data sharing in cloud computing. IEEE Trans. Depend. Secure Comput. 16, 6 (2019), 996--1010.
[7]
G. Skourletopoulos, C. X. Mavromoustakis, G. Mastorakis, J. M. Batalla, H. Song, J. N. Sahalos, and E. Pallis. 2019. Elasticity debt analytics exploitation for green mobile cloud computing: An equilibrium model. IEEE Trans. Green Commun. Netw. 3, 1 (2019), 122--131.
[8]
J. Son and R. Buyya. 2019. Priority-aware VM allocation and network bandwidth provisioning in software-defined networking (SDN)-enabled clouds. IEEE Trans. Sustain. Comput. 4, 1 (2019), 17--28.
[9]
L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Muhlhauser. 2019. MOERA: Mobility-agnostic online resource allocation for edge computing. IEEE Trans. Mobile Comput. 18, 8 (2019), 1843--1856.
[10]
X. Zhou, W. Liang, K. I. Wang, R. Huang, and Q. Jin. 2018. Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Trans. Emerg. Topics Comput. (2018), 1--1.
[11]
Z. Tian, W. Shi, Y. Wang, C. Zhu, X. Du, S. Su, Y. Sun, and N. Guizani. 2019. Real-time lateral movement detection based on evidence reasoning network for edge computing environment. IEEE Trans. Industr. Info. 15, 7 (2019), 4285--4294.
[12]
E. Li, L. Zeng, Z. Zhou, and X. Chen. 2020. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE Trans. Wireless Commun. 19, 1 (2020), 447--457.
[13]
Y. Zhu, Q. He, J. Liu, B. Li, and Y. Hu. 2020. When crowd meets big video data: Cloud-edge collaborative transcoding for personal livecast. IEEE Trans. Netw. Sci. Eng. 7, 1 (2020), 42--53.
[14]
X. Hu, L. Wang, K. Wong, M. Tao, Y. Zhang, and Z. Zheng. 2020. Edge and central cloud computing: A perfect pairing for high energy efficiency and low-latency. IEEE Trans. Wireless Commun. 19, 2 (2020), 1070--1083.
[15]
M. Jia, Z. Yin, D. Li, Q. Guo, and X. Gu. 2019. Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Internet Things J. 6, 3 (2019), 4252--4261.
[16]
Q. He, B. Li, F. Chen, J. Grundy, X. Xia, and Y. Yang. 2020. Diversified third-party library prediction for mobile app development. IEEE Trans. Softw. Eng. (2020), 1--1.
[17]
S. Han, X. Xu, S. Fang, Y. Sun, Y. Cao, X. Tao, and P. Zhang. 2019. Energy efficient secure computation offloading in NOMA-based mMTC networks for IoT. IEEE Internet Things J. 6, 3 (2019), 5674--5690.
[18]
M. A. Jan, M. Usman, X. He, and A. Ur Rehman. 2019. SAMS: A seamless and authorized multimedia streaming framework for WMSN-based IoMT. IEEE Internet Things J. 6, 2 (2019), 1576--1583.
[19]
K. Thiyagarajan, R. Lu, K. El-Sankary, and H. Zhu. 2019. Energy-aware encryption for securing video transmission in Internet of Multimedia Things. IEEE Trans. Circ. Syst. Video Technol. 29, 3 (2019), 610--624.
[20]
J. Ren, G. Yu, Y. He, and G. Y. Li. 2019. Collaborative cloud and edge computing for latency minimization. IEEE Trans. Vehic. Technol. 68, 5 (2019), 5031--5044.
[21]
B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. N. Xiong, and J. Lloret Mauri. 2019. A time-driven data placement strategy for a scientific workflow combining edge computing and cloud computing. IEEE Trans. Industr. Info. 15, 7 (2019), 4254--4265.
[22]
F. Hao, D. Park, J. Kang, and G. Min. 2019. 2L-MC3: A two-layer multi-community-cloud/cloudlet social collaborative paradigm for mobile edge computing. IEEE Internet Things J. 6, 3 (2019), 4764--4773.
[23]
L. Ruan, Y. Yan, S. Guo, F. Wen, and X. Qiu. 2020. Priority-based residential energy management with collaborative edge and cloud computing. IEEE Trans. Industr. Info. 16, 3 (2020), 1848--1857.
[24]
M. Thai, Y. Lin, Y. Lai, and H. Chien. 2020. Workload and capacity optimization for cloud-edge computing systems with vertical and horizontal offloading. IEEE Trans. Netw. Service Manage. 17, 1 (2020), 227--238.
[25]
Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng. 2019. Multi-hop cooperative computation offloading for industrial IoT--Edge--Cloud computing environments. IEEE Trans. Parallel Distrib. Syst. 30, 12 (2019), 2759--2774.
[26]
X. He, R. Jin, and H. Dai. 2019. Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT. IEEE Internet Things J. 6, 3 (2019), 4547--4555.
[27]
X. He, R. Jin, and H. Dai. 2020. Peace: Privacy-preserving and cost-efficient task offloading for mobile-edge computing. IEEE Trans. Wireless Commun. 19, 3 (2020), 1814--1824.
[28]
X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan. 2020. Joint optimization of offloading utility and privacy for edge computing enabled IoT. IEEE Internet Things J. 7, 4 (2020), 2622--2629.
[29]
M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai. 2019. Learning-based privacy-aware offloading for healthcare IoT with energy harvesting. IEEE Internet Things J. 6, 3 (2019), 4307--4316.
[30]
T. Bai, J. Wang, Y. Ren, and L. Hanzo. 2019. Energy-efficient computation offloading for secure UAV-edge-computing systems. IEEE Trans. Vehic. Technol. 68, 6 (2019), 6074--6087.
[31]
W. Hu, Y. Fan, J. Xing, L. Sun, Z. Cai, and S. Maybank. 2018. Deep constrained siamese hash coding network and load-balanced locality-sensitive hashing for near duplicate image detection. IEEE Trans. Image Process. 27, 9 (2018), 4452--4464.
[32]
W. Shao, R. Xiao, J. Huang, H. Liu, and X. Du. 2019. FJLT-FLSH: More efficient fly locality-sensitive hashing algorithm via FJLT for WMSN IoT search. IEEE Internet Things J. 6, 4 (2019), 7122--7136.
[33]
K. Ding, C. Huo, B. Fan, S. Xiang, and C. Pan. 2018. In defense of locality-sensitive hashing. IEEE Trans. Neural Netw. Learn. Syst. 29, 1 (2018), 87--103.
[34]
W. Wu, B. Li, L. Chen, C. Zhang, and P. S. Yu. 2019. Improved consistent weighted sampling revisited. IEEE Trans. Knowl. Data Eng. 31, 12 (2019), 2332--2345.
[35]
H. Li, S. Nutanong, H. Xu, C. Yu, and F. Ha. 2019. C2Net: A network-efficient approach to collision counting LSH similarity join. IEEE Trans. Knowl. Data Eng. 31, 3 (2019), 423--436.
[36]
C. Guo, J. Jia, Y. Jie, C. Z. Liu, and K. R. Choo. 2020. Enabling secure cross-modal retrieval over encrypted heterogeneous IoT databases with collective matrix factorization. IEEE Internet Things J. 7, 4 (2020), 3104--3113.

Cited By

View all
  • (2024)Keamanan Data Internet of Things dalam Perspektif Pseudosains Mario BungeJurnal Filsafat Indonesia10.23887/jfi.v7i2.724357:2(207-216)Online publication date: 30-Jun-2024
  • (2023)Intelligent Identification over Power Big Data: Opportunities, Solutions, and ChallengesComputer Modeling in Engineering & Sciences10.32604/cmes.2022.021198134:3(1565-1595)Online publication date: 2023
  • (2023)Energy-saving Service Offloading for the Internet of Medical Things Using Deep Reinforcement LearningACM Transactions on Sensor Networks10.1145/356026519:3(1-20)Online publication date: 1-Mar-2023
  • Show More Cited By

Index Terms

  1. An LSH-based Offloading Method for IoMT Services in Integrated Cloud-Edge Environment

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Multimedia Computing, Communications, and Applications
        ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 16, Issue 3s
        Special Issue on Privacy and Security in Evolving Internet of Multimedia Things and Regular Papers
        October 2020
        190 pages
        ISSN:1551-6857
        EISSN:1551-6865
        DOI:10.1145/3444536
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 08 January 2021
        Accepted: 01 May 2020
        Revised: 01 May 2020
        Received: 01 February 2020
        Published in TOMM Volume 16, Issue 3s

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. IoMT
        2. LSH
        3. cloud-edge computing
        4. privacy preservation
        5. service offloading

        Qualifiers

        • Research-article
        • Research
        • Refereed

        Funding Sources

        • Priority Academic Program Development of Jiangsu Higher Education Institutions fund
        • Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps
        • National Natural Science Foundation of China

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)37
        • Downloads (Last 6 weeks)8
        Reflects downloads up to 09 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Keamanan Data Internet of Things dalam Perspektif Pseudosains Mario BungeJurnal Filsafat Indonesia10.23887/jfi.v7i2.724357:2(207-216)Online publication date: 30-Jun-2024
        • (2023)Intelligent Identification over Power Big Data: Opportunities, Solutions, and ChallengesComputer Modeling in Engineering & Sciences10.32604/cmes.2022.021198134:3(1565-1595)Online publication date: 2023
        • (2023)Energy-saving Service Offloading for the Internet of Medical Things Using Deep Reinforcement LearningACM Transactions on Sensor Networks10.1145/356026519:3(1-20)Online publication date: 1-Mar-2023
        • (2023)A Lightweight Matrix Factorization for Recommendation With Local Differential Privacy in Big DataIEEE Transactions on Big Data10.1109/TBDATA.2021.31391259:1(160-173)Online publication date: 1-Feb-2023
        • (2023)LSH-based missing value prediction for abnormal traffic sensors with privacy protection in edge computingComplex & Intelligent Systems10.1007/s40747-023-00992-x9:5(5081-5091)Online publication date: 2-Mar-2023
        • (2022)Federated learning in cloud-edge collaborative architecture: key technologies, applications and challengesJournal of Cloud Computing: Advances, Systems and Applications10.1186/s13677-022-00377-411:1Online publication date: 15-Dec-2022
        • (2022)Deep Q Network–Driven Task Offloading for Efficient Multimedia Data Analysis in Edge Computing–Assisted IoVACM Transactions on Multimedia Computing, Communications, and Applications10.1145/354868718:2s(1-24)Online publication date: 21-Jul-2022
        • (2022)Privacy-Aware Factorization-Based Hybrid Recommendation Method for Healthcare ServicesIEEE Transactions on Industrial Informatics10.1109/TII.2022.314310318:8(5637-5647)Online publication date: Aug-2022
        • (2022)Security and privacy of internet of medical things: A contemporary review in the age of surveillance, botnets, and adversarial MLJournal of Network and Computer Applications10.1016/j.jnca.2022.103332201(103332)Online publication date: May-2022
        • (2022)A threat recognition solution of edge data security in industrial internetWorld Wide Web10.1007/s11280-022-01054-x25:5(2109-2138)Online publication date: 1-Sep-2022
        • Show More Cited By

        View Options

        Get Access

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media