Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Indoor Quality-of-position Visual Assessment Using Crowdsourced Fingerprint Maps

Published: 30 January 2021 Publication History
  • Get Citation Alerts
  • Abstract

    Internet-based Indoor Navigation (IIN) architectures organize signals collected by crowdsourcers in Fingerprint Maps (FMs) to improve localization given that satellite-based technologies do not operate accurately in indoor spaces where people spend 80%–90% of their time. In this article, we study the Quality-of-Position (QoP) assessment problem, which aims to assess in an offline manner the localization accuracy that can be obtained by a user that aims to localize using a FM. Particularly, our proposed ACCES framework uses a generic interpolation method using Gaussian Processes (GP), upon which a navigability score at any location is derived using the Cramer-Rao Lower Bound (CRLB). We derive adaptations of ACCES for both Magnetic and Wi-Fi data and implement a complete visual assessment environment, which has been incorporated in the Anyplace open-source IIN. Our experimental evaluation of ACCES in Anyplace suggests the high qualitative and quantitative benefits of our propositions.

    References

    [1]
    Dragan Ahmetovic, Cole Gleason, Kris M. Kitani, Hironobu Takagi, and Chieko Asakawa. 2016. NavCog: Turn-by-turn smartphone navigation assistant for people with visual impairments or blindness. In Proceedings of the 13th Web for All Conference (W4A’16). Association for Computing Machinery, New York, NY.
    [2]
    N. Akai and K. Ozaki. 2015. Gaussian processes for magnetic map-based localization in large-scale indoor environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’15). IEEE/RSJ, New York, NY, 4459--4464.
    [3]
    M. Angelidou, C. Costa, A. Nikitin, and D. Zeinalipour-Yazti. 2018. FMS: Managing crowdsourced indoor signals with the fingerprint management studio. In Proceedings of the 19th IEEE International Conference on Mobile Data Management (MDM’18). IEEE, New York, NY, 288--289.
    [4]
    P. Bahl and V. N. Padmanabhan. 2000. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE19th Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’00), Vol. 2. IEEE, New York, NY, 775--784.
    [5]
    Artur Baniukevic, Christian S. Jensen, and Hua Lu. 2013. Hybrid indoor positioning with Wi-Fi and Bluetooth: Architecture and performance. In Proceedings of the 14th IEEE International Conference on Mobile Data Management. IEEE, New York, NY, 207--216.
    [6]
    C. Beder, A. McGibney, and M. Klepal. 2011. Predicting the expected accuracy for fingerprinting based WiFi localisation systems. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. IEEE, New York, NY, 1--6.
    [7]
    J. Biswas and M. Veloso. 2010. WiFi localization and navigation for autonomous indoor mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, New York, NY, 4379--4384.
    [8]
    J. Blankenbach and A. Norrdine. 2010. Position estimation using artificial generated magnetic fields. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. IEEE, New York, NY, 1--5.
    [9]
    L. Bruno, M. Khider, and P. Robertson. 2013. On-line training of the path-loss model in Bayesian WLAN indoor positioning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. IEEE, New York, NY, 1--9.
    [10]
    Georgios Chatzimilioudis, Andreas Konstantinidis, Christos Laoudias, and Demetrios Zeinalipour-Yazti. 2012. Crowdsourcing with smartphones. IEEE Internet Comput. 16, 5 (2012), 36--44.
    [11]
    Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N. Padmanabhan. 2010. Indoor localization without the pain. In Proceedings of the 16th International Conference on Mobile Computing and Networking (MobiCom’10). Association for Computing Machinery, New York, NY, 173--184.
    [12]
    Rizanne Elbakly and Moustafa Youssef. 2016. CONE: Zero-calibration accurate confidence estimation for indoor localization systems. CoRR abs/1610.02274 (2016).
    [13]
    Carlos E. Galván-Tejada, Juan Pablo García-Vázquez, Jorge I. Galván-Tejada, J. Rubén Delgado-Contreras, and Ramon F. Brena. 2015. Infrastructure-less indoor localization using the microphone, magnetometer and light sensor of a smartphone. Sensors 15, 8 (2015), 20355--20372.
    [14]
    Kyriakos Georgiou, Timotheos Constambeys, Christos Laoudias, Lambros Petrou, Georgios Chatzimilioudis, and Demetrios Zeinalipour-Yazti. 2015. Anyplace: A crowdsourced indoor information service. In Proceedings of the 16th IEEE International Conference on Mobile Data Management, Vol. 1. IEEE, New York, NY, 291--294.
    [15]
    Fredrik Gustafsson and Fredrik Gunnarsson. 2005. Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. IEEE Sig. Proc. Mag. 22, 4 (2005), 41--53.
    [16]
    Robert Harle. 2013. A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutor. 15, 3 (2013), 1281--1293.
    [17]
    Janne Haverinen and Anssi Kemppainen. 2009. Global indoor self-localization based on the ambient magnetic field. Robot. Auton. Syst. 57, 10 (2009), 1028--1035.
    [18]
    Suining He, Tianyang Hu, and S.-H. Gary Chan. 2015. Contour-based trilateration for indoor fingerprinting localization. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys’15). Association for Computing Machinery, New York, NY, 225--238.
    [19]
    A. K. M. M. Hossain and W. Soh. 2010. Cramer-Rao bound analysis of localization using signal strength difference as location fingerprint. In Proceedings of the IEEE International Conference on Computer Communications. IEEE, New York, NY, 1--9.
    [20]
    Pavel Ivanov and Lauri Aarne Johannes Wirola. 2020. Metric for evaluating indoor positioning systems. U.S. patent number 10,555,132.
    [21]
    Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. Springer, Berlin.
    [22]
    Suk Hoon Jung, Byeong-Cheol Moon, and Dongsoo Han. 2017. Performance evaluation of radio map construction methods for Wi-Fi positioning systems. IEEE Trans. Intell. Transport. Syst. 18, 4 (2017), 880--889.
    [23]
    K. Kaemarungsi and P. Krishnamurthy. 2004. Properties of indoor received signal strength for WLAN location fingerprinting. In Proceedings of the 1st International Conference on Mobile and Ubiquitous Systems: Networking and Services (MOBIQUITOUS’04). IEEE, New York, NY, 14--23.
    [24]
    L. Kanaris, A. Kokkinis, A. Liotta, and S. Stavrou. 2017. Quality of fingerprint radiomaps for positioning systems. In Proceedings of the 24th International Conference on Telecommunications (ICT’17). IEEE, New York, NY, 1--5.
    [25]
    Yungeun Kim, Seokjun Lee, Yohan Chon, Rhan Ha, and Hojung Cha. 2017. Scalable and consistent radio map management using participatory sensing. Pervas. Mob. Comput. 40, C (Sept. 2017), 397--413.
    [26]
    Andreas Konstantinidis, Georgios Chatzimilioudis, Demetrios Zeinalipour-Yazti, Paschalis Mpeis, Nikos Pelekis, and Yannis Theodoridis. 2015. Privacy-preserving indoor localization on smartphones. IEEE Trans. Knowl. Data Eng. 27, 11 (Nov. 2015), 3042--3055.
    [27]
    Andreas Konstantinidis, Panagiotis Irakleous, Zacharias Georgiou, Demetrios Zeinalipour-Yazti, and Panos K. Chrysanthis. 2018. IoT data prefetching in indoor navigation SOAs. ACM Trans. Internet Technol. 19, 1 (Nov. 2018).
    [28]
    P. Kontkanen, P. Myllymaki, T. Roos, H. Tirri, K. Valtonen, and H. Wettig. 2004. Topics in probabilistic location estimation in wireless networks. In Proceedings of the IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2. IEEE, New York, NY, 1052--1056.
    [29]
    Sudhir Kumar, Rajesh M. Hegde, and Niki Trigoni. 2016. Gaussian process regression for fingerprinting based localization. Ad Hoc Netw. 51 (2016), 1--10.
    [30]
    Christos Laoudias, Adriano Moreira, Sunwoo Kim, Sangwoo Lee, Lauri Wirola, and Carlo Fischione. 2018. A survey of enabling technologies for network localization, tracking, and navigation. IEEE Commun. Surv. Tutor. 20, 4 (2018), 3607--3644.
    [31]
    Hendrik Lemelson, Mikkel Baun Kjærgaard, Rene Hansen, and Thomas King. 2009. Error estimation for indoor 802.11 location fingerprinting. In Proceedings of the International Symposium on Location- and Context-Awareness. Springer, Berlin, 138--155.
    [32]
    Filip Lemic, Vlado Handziski, and Jeroen Famaey. 2019. Toward regression-based estimation of localization errors in fingerprinting-based localization. In Proceedings of the IEEE 89th Vehicular Technology Conference (VTC’19-Spring). IEEE, New York, NY, 1--5.
    [33]
    Binghao Li, James Salter, Andrew G. Dempster, and Chris Rizos. 2006. Indoor positioning techniques based on wireless LAN. In Proceedings of the 1st International Conference on Wireless Broadband and Ultra Wideband Communications. IEEE, New York, NY, 13--16.
    [34]
    Hui Liu, H. Darabi, P. Banerjee, and Jing Liu. 2007. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst., Man, Cyber., Part C: Applic. Rev. 37, 6 (2007), 1067--1080.
    [35]
    Dimitrios Lymberopoulos, Jie Liu, Xue Yang, Romit Roy Choudhury, Vlado Handziski, and Souvik Sen. 2015. A realistic evaluation and comparison of indoor location technologies: Experiences and lessons learned. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (IPSN’15). Association for Computing Machinery, New York, NY, 178--189.
    [36]
    Paschalis Mpeis, Thierry Roussel, Manish Kumar, Constantinos Costa, Christos Laoudias, Dennis Capot-Ray, and Demetrios Zeinalipour-Yazti. 2020. The anyplace 4.0 IoT localization architecture. In Proceedings of the 21st IEEE International Conference on Mobile Data Management (MDM’20). IEEE, New York, NY, 218--225.
    [37]
    Artyom Nikitin, Christos Laoudias, Georgios Chatzimilioudis, Panagiotis Karras, and Demetrios Zeinalipour-Yazti. 2017. Indoor localization accuracy estimation from fingerprint data. In Proceedings of the 18th IEEE International Conference on Mobile Data Management (MDM’17). IEEE, New York, NY, 196--205.
    [38]
    H. Nurminen, J. Talvitie, S. Ali-Löytty, P. Müller, E. Lohan, R. Piché, and M. Renfors. 2012. Statistical path loss parameter estimation and positioning using RSS measurements in indoor wireless networks. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN’12). IEEE, New York, NY, 1--9.
    [39]
    F. Pereira, C. Theis, A. Moreira, and M. Ricardo. 2011. Evaluating location fingerprinting methods for underground GSM networks deployed over Leaky Feeder. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. IEEE, New York, NY, 1--6.
    [40]
    Lambros Petrou, George Larkou, Christos Laoudias, Demetrios Zeinalipour-Yazti, and Christos G. Panayiotou. 2014. Demonstration abstract: Crowdsourced indoor localization and navigation with anyplace. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks (IPSN’14). IEEE Press, New York, NY, 331--332.
    [41]
    Sanjay Purushotham and C.-C. Jay Kuo. 2016. Personalized group recommender systems for location-and event-based social networks. ACM Trans. Spatial Algor. Syst. 2, 4 (2016), 16.
    [42]
    Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge, MA.
    [43]
    Teemu Roos, Petri Myllymaki, Henry Tirri, Pauli Misikangas, and Juha Sievanen. 2002. A probabilistic approach to WLAN user location estimation. Int. J. Wirel. Inform. Netw. 9, 3 (2002), 155--164.
    [44]
    E. Sansano, R. Montoliu, and J. Torres-Sospedra. 2017. A novel methodology to estimate a measurement of the inherent difficulty of an indoor localization radio map. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN’17). IEEE, New York, NY, 1--8.
    [45]
    E. Sansano, R. Montoliu, and J. Torres-Sospedra. 2017. A novel methodology to estimate a measurement of the inherent difficulty of an indoor localization radio map. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN’17). IEEE, New York, NY, 1--8.
    [46]
    Georgios Skoumas, Dieter Pfoser, Anastasios Kyrillidis, and Timos Sellis. 2016. Location estimation using crowdsourced spatial relations. ACM Trans. Spatial Algor. Syst. 2, 2 (2016), 5.
    [47]
    Maja Stella, Mladen Russo, and Dinko Begusic. 2012. RF localization in indoor environment. Radioengineering 21, 2 (2012), 557--567.
    [48]
    Sukhoon Jung, Choon-oh Lee, and Dongsoo Han. 2011. Wi-Fi fingerprint-based approaches following log-distance path loss model for indoor positioning. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals. IEEE, New York, NY, 1--2.
    [49]
    Shan-Yun Teng, Wei-Shinn Ku, and Kun-Ta Chuang. 2017. Toward mining stop-by behaviors in indoor space. ACM Trans. Spatial Algor. Syst. 3, 2 (2017), 7.
    [50]
    Joaquín Torres-Sospedra, Raúl Montoliu, Sergio Trilles, Oscar Belmonte, and Joaquín Huerta. 2015. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Exp. Syst. Applic. 42, 23 (2015), 9263--9278.
    [51]
    J. Torres-Sospedra, D. Rambla, R. Montoliu, O. Belmonte, and J. Huerta. 2015. UJIIndoorLoc-Mag: A new database for magnetic field-based localization problems. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN’15). IEEE, New York, NY, 1--10.
    [52]
    Bo Wang and Jian Qing Shi. 2014. Generalized Gaussian process regression model for non-Gaussian functional data. J. Amer. Statist. Assoc. 109, 507 (2014), 1123--1133.
    [53]
    He Wang, Souvik Sen, Ahmed Elgohary, Moustafa Farid, Moustafa Youssef, and Romit Roy Choudhury. 2012. No need to war-drive: Unsupervised indoor localization. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12). Association for Computing Machinery, New York, NY, 197--210.
    [54]
    Hongkai Wen, Zhuoling Xiao, Andrew Markham, and Niki Trigoni. 2015. Accuracy estimation for sensor systems. IEEE Trans. Mob. Comput. 14, 7 (2015), 1330--1343.
    [55]
    Xinrong Li, K. Pahlavan, M. Latva-aho, and M. Ylianttila. 2000. Comparison of indoor geolocation methods in DSSS and OFDM wireless LAN systems. In Proceedings of the 52nd Vehicular Technology Conference (VTC’00), Vol. 6. IEEE, New York, NY, 3015--3020.
    [56]
    Moustafa Youssef and Ashok Agrawala. 2005. The horus WLAN location determination system. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services (MobiSys’05). Association for Computing Machinery, New York, NY, 205--218.
    [57]
    Demetrios Zeinalipour-Yazti and Christos Laoudias. 2017. The anatomy of the anyplace indoor navigation service. SIGSPATIAL Special 9, 2 (2017), 3--10.
    [58]
    Demetrios Zeinalipour-Yazti, Christos Laoudias, Kyriakos Georgiou, and Georgios Chatzimilioudis. 2017. Internet-based indoor navigation services. IEEE Internet Comput. 21, 4 (2017), 54--63.

    Cited By

    View all
    • (2024)New directions in motion-prediction-based systemsSoft Computing10.1007/s00500-024-09760-6Online publication date: 5-Jul-2024
    • (2023)A Novel Weighted Fusion Based Efficient Clustering for Improved Wi-Fi Fingerprint Indoor PositioningIEEE Transactions on Wireless Communications10.1109/TWC.2022.322579622:7(4461-4474)Online publication date: 1-Jul-2023
    • (2021)ASTRO: Reducing COVID-19 Exposure through Contact Prediction and AvoidanceACM Transactions on Spatial Algorithms and Systems10.1145/34904928:2(1-31)Online publication date: 30-Dec-2021

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Spatial Algorithms and Systems
    ACM Transactions on Spatial Algorithms and Systems  Volume 7, Issue 2
    June 2021
    148 pages
    ISSN:2374-0353
    EISSN:2374-0361
    DOI:10.1145/3432175
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 January 2021
    Accepted: 01 October 2020
    Revised: 01 September 2020
    Received: 01 June 2019
    Published in TSAS Volume 7, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Indoor localization
    2. accuracy estimation
    3. fingerprint management

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Cyprus’ Research Promotion Foundation RESTART 2016-2020 programme
    • EU’s Marie Skłodowska-Curie Actions (MSCA) H2020-MSCA-RISE-2018 project ENDORSE
    • European Union’s Horizon 2020 research and innovation programme
    • Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development
    • EnterCY INTEGRATED/0609/0020; EU’s Horizon 2020 research and innovation programme project LASH FIRE

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)20
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)New directions in motion-prediction-based systemsSoft Computing10.1007/s00500-024-09760-6Online publication date: 5-Jul-2024
    • (2023)A Novel Weighted Fusion Based Efficient Clustering for Improved Wi-Fi Fingerprint Indoor PositioningIEEE Transactions on Wireless Communications10.1109/TWC.2022.322579622:7(4461-4474)Online publication date: 1-Jul-2023
    • (2021)ASTRO: Reducing COVID-19 Exposure through Contact Prediction and AvoidanceACM Transactions on Spatial Algorithms and Systems10.1145/34904928:2(1-31)Online publication date: 30-Dec-2021

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media