Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3434780.3436652acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

A platform for management and visualization of medical data and medical imaging

Published: 22 January 2021 Publication History

Abstract

The application of artificial intelligence algorithms to medical data has gained relevance over the years. These algorithms can enable disease detection, image segmentation, assessment of organ functions, among other research tasks. However, to effectively apply and benefit from artificial intelligence in this context, it is important to tackle the heterogeneity and diversity of data structures and data sources. For these reasons, it is important to rely on information systems that unify data found in medical domains. This work outlines the features of an online platform that allow different roles to upload, process and research on structured medical data and medical imaging.

References

[1]
A. Rajkomar, J. Dean, and I. Kohane. 2019. Machine Learning in Medicine. N Engl J Med 380, 14 (04), 1347-1358.
[2]
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W.M Van Der Laak, B. Van Ginneken, and C. I. Sánchez. 2017. A survey on deep learning in medical image analysis. Med Image Anal 42(Dec), 60-88.
[3]
Xiaoxuan Liu, Livia Faes, Aditya U Kale, Siegfried K Wagner, Dun Jack Fu, Alice Bruynseels, Thushika Mahendiran, Gabriella Moraes, Mohith Shamdas, and Christoph Kern. 2019. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The lancet digital health 1, 6, e271-e297.
[4]
O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P. A. Heng, I. Cetin, K. Lekadir, O. Camara, M. A. Gonzalez Ballester, G. Sanroma, S. Napel, S. Petersen, G. Tziritas, E. Grinias, M. Khened, V. A. Kollerathu, G. Krishnamurthi, M. M. Rohe, X. Pennec, M. Sermesant, F. Isensee, P. Jager, K. H. Maier-Hein, P. M. Full, I. Wolf, S. Engelhardt, C. F. Baumgartner, L. M. Koch, J. M. Wolterink, I. Isgum, Y. Jang, Y. Hong, J. Patravali, S. Jain, O. Humbert, and P. M. Jodoin. 2018. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans Med Imaging 37, 11 (Nov), 2514-2525.
[5]
Peter Mildenberger, Marco Eichelberg, and Eric Martin. 2002. Introduction to the DICOM standard. European radiology 12, 4, 920-927.
[6]
D. S. Marcus, T. R. Olsen, M. Ramaratnam, and R. L. Buckner. 2007. The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5, 1, 11-34.
[7]
E. Gibson, W. Li, C. Sudre, L. Fidon, D. I. Shakir, G. Wang, Z. Eaton-Rosen, R. Gray, T. Doel, Y. Hu, T. Whyntie, P. Nachev, M. Modat, D. C. Barratt, S. Ourselin, M. J. Cardoso, and T. Vercauteren. 2018. NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed 158(May), 113-122.
[8]
A. García-Holgado and F. J. García-Peñalvo. 2017. Preliminary validation of the metamodel for developing learning ecosystems. In Fifth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’17) (Cádiz, Spain, October 18-20, 2017) J.M. Dodero, M.S. Ibarra Sáiz and I. Ruiz Rube Eds. ACM, New York, NY, USA.
[9]
Alicia García-Holgado and Francisco José García-Peñalvo. 2019. Validation of the learning ecosystem metamodel using transformation rules. Future Generation Computer Systems 91, 300-310.
[10]
Django Software Foundation. 2015. Django Web Framework. https://www.djangoproject.com/
[11]
Paul A Harris, Robert Taylor, Robert Thielke, Jonathon Payne, Nathaniel Gonzalez, and Jose G Conde. 2009. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of biomedical informatics 42, 2, 377-381.
[12]
Andrea Vázquez-Ingelmo, Francisco José García-Peñalvo, and Roberto Therón. 2019. Taking advantage of the software product line paradigm to generate customized user interfaces for decision-making processes: a case study on university employability. PeerJ Computer Science 5(2019/07/01), e203.
[13]
Andrea Vázquez-Ingelmo, Francisco José García-Peñalvo, Roberto Therón, Daniel Amo Filvà, and David Fonseca Escudero. 2020. Connecting domain-specific features to source code: towards the automatization of dashboard generation. Cluster Computing. The Journal of Networks, Software Tools and Applications, In Press.
  1. A platform for management and visualization of medical data and medical imaging

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    TEEM'20: Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality
    October 2020
    1084 pages
    ISBN:9781450388504
    DOI:10.1145/3434780
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 January 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Artificial Intelligence
    2. Data management
    3. Health platform
    4. Medical imaging
    5. Structured medical data

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    TEEM'20

    Acceptance Rates

    Overall Acceptance Rate 496 of 705 submissions, 70%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 87
      Total Downloads
    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media