Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3437963.3441784acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Open access

Enhancing Neural Recommender Models through Domain-Specific Concordance

Published: 08 March 2021 Publication History

Abstract

Recommender models trained on historical observational data alone can be brittle when domain experts subject them to counterfactual evaluation. In many domains, experts can articulate common, high-level mappings or rules between categories of inputs (user's history) and categories of outputs (preferred recommendations). One challenge is to determine how to train recommender models to adhere to these rules. In this work, we introduce the goal of domain-specific concordance: the expectation that a recommender model follow a set of expert-defined categorical rules. We propose a regularization-based approach that optimizes for robustness on rule-based input perturbations. To test the effectiveness of this method, we apply it in a medication recommender model over diagnosis-medicine categories, and in movie and music recommender models, on rules over categories based on movie tags and song genres. We demonstrate that we can increase the category-based robustness distance by up to 126% without degrading accuracy, but rather increasing it by up to 12% compared to baseline models in the popular MIMIC-III, MovieLens-20M and Last.fm Million Song datasets.

References

[1]
S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In ISWC'07/ASWC'07 (Busan, Korea). 722--735.
[2]
L. Bernardi, J. Kamps, J. Kiseleva, and M. JI Müller. 2015. The continuous cold start problem in e-commerce recommender systems. arXiv:1508.01177 (2015).
[3]
A. Beutel, J. Chen, T. Doshi, H. Qian, L. Wei, Y. Wu, L. Heldt, Z. Zhao, L. Hong, E. H. Chi, and C. Goodrow. 2019. Fairness in Recommendation Ranking through Pairwise Comparisons. KDD (2019), 2212--2220.
[4]
A. J. Biega, K. P. Gummadi, and G. Weikum. 2018. Equity of Attention: Amortizing Individual Fairness in Rankings. In SIGIR . ACM, 405--414.
[5]
C. J. Cai, E. Reif, N. Hegde, J. Hipp, B. Kim, D. Smilkov, M Wattenberg, F. Viegas, G. S. Corrado, M. C. Stumpe, and M. Terry. 2019. Human-Centered Tools for Coping with Imperfect Algorithms During Medical Decision-Making. In CHI .
[6]
Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S Liang. 2019. Unlabeled data improves adversarial robustness. In NeurIPS. 11192--11203.
[7]
K. Christakopoulou and A. Banerjee. 2019. Adversarial Attacks on an Oblivious Recommender. In RecSys (Copenhagen, Denmark). 322--330.
[8]
J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. 2019. Certified adversarial robustness via randomized smoothing. arXiv preprint arXiv:1902.02918 (2019).
[9]
Y. Deldjoo, V. W. Anelli, H. Zamani, A. Bellogin, and T. Di Noia. 2019. Recommender Systems Fairness Evaluation via Generalized Cross Entropy. arxiv: 1908.06708
[10]
Y. Deldjoo, T. Di Noia, E. Di Sciascio, and F. A. Merra. 2020. How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models. In SIGIR (Virtual Event, China). 951--960.
[11]
J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT.
[12]
Y. Ding, J. Liu, and D. Wang. 2018. Deep Feature Fusion over Multi-Field Categorical Data for Rating Prediction. In AICCC (Tokyo, Japan). 16--22.
[13]
Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).
[14]
E. D. Gennatas, J. H. Friedman, L. H. Ungar, R. Pirracchio, E. Eaton, L. G. Reichmann, Y. Interian, J. M. Luna, C. B. Simone, A. Auerbach, E. Delgado, M. J. van der Laan, T. D. Solberg, and G. Valdes. 2020. Expert-augmented machine learning. PNAS, Vol. 117, 9 (2020), 4571--4577.
[15]
A. Ghazimatin, O. Balalau, R. Saha Roy, and G. Weikum. 2020. PRINCE: Provider-Side Interpretability with Counterfactual Explanations in Recommender Systems. In WSDM (Houston, TX, USA). 196--204.
[16]
S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovic, T. A. Mann, and P. Kohli. 2018. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. (2018). arxiv: 1810.12715
[17]
A. Gunawardana and C. Meek. 2009. A unified approach to building hybrid recommender systems. In RecSys. 117--124.
[18]
G. Hadash, O. S. Shalom, and R. Osadchy. 2018. Rank and rate: multi-task learning for recommender systems. In RecSys. 451--454.
[19]
F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst., Vol. 5, 4, Article 19 (Dec. 2015), bibinfonumpages19 pages.
[20]
Taha Hassan. 2019. Trust and trustworthiness in social recommender systems. In Companion Proceedings of The 2019 World Wide Web Conference. 529--532.
[21]
X. He, Z. He, X. Du, and T.S. Chua. 2018. Adversarial Personalized Ranking for Recommendation. In SIGIR . 355--364.
[22]
G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).
[23]
Y.L. Hsieh, M. Cheng, D.C. Juan, W. Wei, W.L. Hsu, and C.J. Hsieh. 2019. On the Robustness of Self-Attentive Models. In ACL. Florence, Italy, 1520--1529.
[24]
N. J. Hurley. 2011. Robustness of Recommender Systems. In RecSys. 9--10.
[25]
A Ilyas, S Santurkar, D Tsipras, L Engstrom, B Tran, and A Madry. 2019. Adversarial Examples Are Not Bugs, They Are Features. In NeurIPS, Vol. 32. 125--136.
[26]
R. Jia, A. Raghunathan, K. Göksel, and P. Liang. 2019. Certified Robustness to Adversarial Word Substitutions. EMNLP-IJCNLP (2019).
[27]
W.C. Kang, D. Z. Cheng, T. Chen, X. Yi, D. Lin, L. Hong, and E. H. Chi. 2020. Learning Multi-Granular Quantized Embeddings for Large-Vocab Categorical Features in Recommender Systems. In WWW (Taipei, Taiwan). 562--566.
[28]
H Kannan, A Kurakin, and I Goodfellow. 2018. Adversarial logit pairing. arXiv:1803.06373 (2018).
[29]
D. Kaushik, E. Hovy, and Z. C. Lipton. 2019. Learning the difference that makes a difference with counterfactually-augmented data. arXiv:1909.12434 (2019).
[30]
B. P. Knijnenburg, N. J.M. Reijmer, and M. C. Willemsen. 2011. Each to His Own: How Different Users Call for Different Interaction Methods in Recommender Systems. In RecSys (Chicago, Illinois, USA). 141--148.
[31]
Igor Kononenko. 1993. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, Vol. 7 (1993), 317--337.
[32]
S. Krichene, M. Gartrell, and C. Calauzènes. 2019. Embedding models for recommendation under contextual constraints. arXiv, Vol. abs/1907.01637 (2019).
[33]
D. G. Lee, K. S. Ryu, M. Bashir, J.W. Bae, and K. H. Ryu. 2013. Discovering Medical Knowledge using Association Rule Mining in Young Adults with Acute Myocardial Infarction. Journal of Medical Systems, Vol. 37, 2 (15 Jan 2013), 9896.
[34]
Z. C. Lipton. 2016. The Mythos of Model Interpretability. (2016). arxiv: 1606.03490
[35]
P. Massa and P. Avesani. [n.d.]. Trust-aware recommender systems. In RecSys .
[36]
J. McAuley, R. Pandey, and J. Leskovec. 2015. Inferring networks of substitutable and complementary products. In KDD . 785--794.
[37]
K. Morik, P. Brockhausen, and T. Joachims. 1999. Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring. In ICML. 268--277.
[38]
R.K Mothilal, A Sharma, and C Tan. 2019. Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations. CoRR, Vol. abs/1905.07697 (2019).
[39]
M P O'Mahony, N J Hurley, and G Silvestre. 2005. Recommender systems: Attack types and strategies. In AAAI. 334--339.
[40]
World Health Organization. 1978. International classification of diseases .
[41]
World Health Organization. 2003. Anatomical Therapeutic Chemical (ATC) Classification System with Defined Daily Doses. (2003).
[42]
M O'Mahony, N Hurley, N Kushmerick, and G Silvestre. 2004. Collaborative Recommendation: A Robustness Analysis. ACM Trans. Internet Technol. (2004).
[43]
M Pawelczyk, K Broelemann, and G Kasneci. 2020. Learning Model-Agnostic Counterfactual Explanations for Tabular Data (WWW '20).
[44]
Judea Pearl and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect 1st ed.). Basic Books, Inc., USA.
[45]
C Qin, J Martens, S Gowal, D Krishnan, K Dvijotham, A Fawzi, S De, R Stanforth, and P Kohli. 2019. Adversarial robustness through local linearization. In NeurIPS .
[46]
T Qin, T Liu, J Xu, and H Li. 2010. LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval. Inf. Retr., Vol. 13, 4 (2010).
[47]
Y Qin, X Wang, A Beutel, and E.H Chi. 2020. Improving Uncertainty Estimates through the Relationship with Adversarial Robustness. ArXiv, Vol. 2006.16375 (2020).
[48]
B Rastegarpanah, K P Gummadi, and M Crovella. 2019. Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. In WWW. 231--239.
[49]
M.T Ribeiro, S Singh, and C Guestrin. 2016. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. CoRR, Vol. abs/1602.04938 (2016).
[50]
J Shang, T Ma, C Xiao, and J Sun. 2019. Pre-training of Graph Augmented Transformers for Medication Recommendation. CoRR, Vol. abs/1906.00346 (2019).
[51]
Ashudeep Singh and Thorsten Joachims. 2018. Fairness of Exposure in Rankings. In KDD, Yike Guo and Faisal Farooq (Eds.). ACM, 2219--2228.
[52]
A Sinha, D. F. Gleich, and K Ramani. 2017. Deconvolving Feedback Loops in Recommender Systems. CoRR, Vol. abs/1703.01049 (2017).
[53]
Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. CoRR, Vol. abs/1905.03375 (2019). arxiv: 1905.03375 http://arxiv.org/abs/1905.03375
[54]
B Whitman T Bertin-Mahieux, D. P.W. Ellis and P Lamere. 2011. The Million Song Dataset. ISMIR (2011).
[55]
A Taha and A Hadi. 2019. Anomaly Detection Methods for Categorical Data: A Review. ACM Comput. Surv., Vol. 52, 2, Article 38 (May 2019).
[56]
Brendon Towle and Clark N. Quinn. 2000. Knowledge Based Recommender Systems Using Explicit User Models.
[57]
P Velickovic, G Cucurull, A Casanova, A Romero, P Liò, and Y Bengio. 2018. Graph Attention Networks. ArXiv, Vol. abs/1710.10903 (2018).
[58]
J Villena-Román, S Collada-Pérez, S Lana-Serrano, and J.C González-Cristóbal. 2011. Hybrid approach combining machine learning and a rule-based expert system for text categorization. In Twenty-Fourth International FLAIRS Conference .
[59]
J Wang and J Caverlee. 2019. Recurrent recommendation with local coherence (WSDM).
[60]
Z Wang, Z Jiang, Z Ren, J Tang, and D Yin. 2018. A path-constrained framework for discriminating substitutable and complementary products in e-commerce. In WWW .
[61]
Filzmoser P Gyimesi M. Weisser A, Endel G. 2008. ATC -> ICD -- evaluating the reliability of prognoses for ICD-10 diagnoses derived from the ATC-Code of prescriptions. BMC Health Serv Res. 2008 (2008).
[62]
Michael Wellman and Max Henrion. 1993. Explaining `explaining away'. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 15 (04 1993), 287--292.
[63]
A. B. Wilcox and G. Hripcsak. 2003. The role of domain knowledge in automating medical text report classification. JAMIA (2003).
[64]
C Xie, Y Wu, L Maaten, A Yuille, and K He. 2019. Feature denoising for improving adversarial robustness. In ICCV .
[65]
D Xin, N Mayoraz, H Pham, K Lakshmanan, and J Anderson. 2017. Folding: Why Good Models Sometimes Make Spurious Recommendations (RecSys '17).
[66]
H Zhang, Y Yu, J Jiao, E Xing, L Ghaoui, and M Jordan. 2019. Theoretically Principled Trade-off between Robustness and Accuracy., Vol. CoRR/1901.08573 (2019).
[67]
Z Zhang, C Xie, J Wang, L Xie, and A Yuille. 2018. Deepvoting: A robust and explainable deep network for semantic part detection under partial occlusion. In ICCV, 2018. 1372--1380.
[68]
Q Zhao, J Chen, M Chen, S Jain, A Beutel, F Belletti, and E. Chi. 2018. Categorical-Attributes-Based Item Classification for Recommender Systems (RecSys '18).
[69]
G Zhou, X Zhu, C Song, Y Fan, H Zhu, X Ma, Y Yan, J Jin, H Li, and K Gai. 2018. Deep Interest Network for Click-Through Rate Prediction (ACM SIGKDD '18).
[70]
R Zmigrod, S Mielke, H Wallach, and R Cotterell. 2019. Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. arXiv preprint arXiv:1906.04571 (2019).

Cited By

View all
  • (2022)Multilevel Feature Interaction Learning for Session-Based Recommendation via Graph Neural NetworksWeb Engineering10.1007/978-3-031-09917-5_3(31-46)Online publication date: 1-Jul-2022

Index Terms

  1. Enhancing Neural Recommender Models through Domain-Specific Concordance

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining
    March 2021
    1192 pages
    ISBN:9781450382977
    DOI:10.1145/3437963
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 March 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. information systems
    2. recommender systems

    Qualifiers

    • Research-article

    Funding Sources

    • Google Student Research Advisorship Program

    Conference

    WSDM '21

    Acceptance Rates

    Overall Acceptance Rate 498 of 2,863 submissions, 17%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)102
    • Downloads (Last 6 weeks)21
    Reflects downloads up to 03 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Multilevel Feature Interaction Learning for Session-Based Recommendation via Graph Neural NetworksWeb Engineering10.1007/978-3-031-09917-5_3(31-46)Online publication date: 1-Jul-2022

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media