Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3449726.3461419acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial
Open access

Coevolutionary computation for adversarial deep learning

Published: 08 July 2021 Publication History
First page of PDF

References

[1]
Al-Dujaili, A., Schmiedlechner, T., Hemberg, E., O'Reilly, U.M. "Towards distributed coevolutionary GANs." In Association for the Advancement of Artificial Intelligence (AAAI) 2018 Fall Symposium. 2018
[2]
Costa, V., Lourenço, N., Correia, J., Machado, P. "COEGAN: evaluating the coevolution effect in generative adversarial networks." In Proceedings of the Genetic and Evolutionary Computation Conference. pp 374--382. 2019
[3]
Costa, V., Lourenço, N., Machado, P. "Coevolution of generative adversarial networks." In International Conference on the Applications of Evolutionary Computation (Part of EvoStar). Springer, 473--487. 2019
[4]
Ficici, S. G., & Pollack, J. B. "Challenges in coevolutionary learning: arms-race dynamics, open-endedness, and medicocre stable states." In Proceedings of the sixth international conference on Artificial life. pp. 238--247. 1998
[5]
Fogel, D. B. "Evolutionary computation: toward a new philosophy of machine intelligence." John Wiley & Sons. 2006
[6]
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. "Generative Adversarial Nets." In arXiv preprint arXiv:1406.2661. 2014
[7]
Hemberg, E., Toutouh, J., Schmiedlechner, T., O'Reilly, U.M. "Spatial Coevolution for Generative Adversarial Network Training". ACM Transactions on Evolutionary Learning and Optimization, pages 25, Springer. 2021
[8]
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S. "GANs trained by a two time-scale update rule converge to a local nash equilibrium." In Proceedings of the 31st International Conference on Neural Information Processing Systems. pp. 6629--6640. 2017
[9]
Hillis, D.W. "Co-evolving parasites improve simulated evolution as an optimization procedure." Physica D: Nonlinear Phenomena 42, 1 pp. 228--234. 1990
[10]
Mitchell, M. "Coevolutionary Learning with Spatially Distributed Populations." Computational Intelligence: Principles and Practice. 2006
[11]
O'Reilly, U. M., Toutouh, J., Pertierra, M., Sanchez, D. P., Garcia, D., Luogo, A. E., Kelly, J., Hemberg, E. "Adversarial genetic programming for cyber security: A rising application domain where GP matters." Genetic Programming and Evolvable Machines, 21(1), 219--250. 2020
[12]
Pérez, E., Nesmachnow, S., Toutouh, J., Hemberg, E., & O'Reily, U. M. "Parallel/distributed implementation of cellular training for generative adversarial neural networks." In 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 512--518. 2020
[13]
Popovici E., Bucci A., Wiegand R.P., De Jong E.D. "Coevolutionary Principles." In Rozenberg G., Bäck T., Kok J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. 2012
[14]
Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., Chen, X. "Improved Techniques for Training GANs." In Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016
[15]
Schmiedlechner, T., Ng Zhi Yong, I., Al-Dujaili, A., Hemberg, E., O'Reilly, U.M. Lipizzaner: A System That Scales Robust Generative Adversarial Network Training. In the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018) Workshop on Systems for ML and Open Source Software. 2018
[16]
Toutouh, J., Hemberg, E., O'Reilly, U.M. "Spatial Evolutionary Generative Adversarial Networks." In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19). ACM, New York, NY, USA, 472--480. 2019
[17]
Toutouh, J., Hemberg, E., O'Reilly, U.M. "Analyzing the Components of Distributed Coevolutionary GAN Training." In International Conference on Parallel Problem Solving from Nature. Springer, Cham. pp. 552--566. 2020
[18]
Toutouh, J., Hemberg, E., O'Reilly, U.M. "Data Dieting in GAN Training." In: Iba H., Noman N. (eds) Deep Neural Evolution. Natural Computing Series. Springer, Singapore. 2020
[19]
Toutouh, J., Hemberg, E., O'Reilly, U.M. "Re-purposing heterogeneous generative ensembles with evolutionary computation." In Proceedings of the 2020 Genetic and Evolutionary Computation Conference. pp 425--434. 2020
[20]
Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K. "An empirical study on evaluation metrics of generative adversarial networks." arXiv preprint arXiv:1806.07755. 2018
  1. Coevolutionary computation for adversarial deep learning

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion
    July 2021
    2047 pages
    ISBN:9781450383516
    DOI:10.1145/3449726
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 July 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Tutorial

    Funding Sources

    • H2020 Marie Sk?odowska-Curie Actions

    Conference

    GECCO '21
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 318
      Total Downloads
    • Downloads (Last 12 months)77
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media