Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3458864.3467881acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article
Open access

Throughput-fairness tradeoffs in mobility platforms

Published: 24 June 2021 Publication History
  • Get Citation Alerts
  • Abstract

    This paper studies the problem of allocating tasks from different customers to vehicles in mobility platforms, which are used for applications like food and package delivery, ridesharing, and mobile sensing. A mobility platform should allocate tasks to vehicles and schedule them in order to optimize both throughput and fairness across customers. However, existing approaches to scheduling tasks in mobility platforms ignore fairness.
    We introduce Mobius, a system that uses guided optimization to achieve both high throughput and fairness across customers. Mobius supports spatiotemporally diverse and dynamic customer demands. It provides a principled method to navigate inherent tradeoffs between fairness and throughput caused by shared mobility. Our evaluation demonstrates these properties, along with the versatility and scalability of Mobius, using traces gathered from ridesharing and aerial sensing applications. Our ridesharing case study shows that Mobius can schedule more than 16,000 tasks across 40 customers and 200 vehicles in an online manner.

    References

    [1]
    Adafruit. Pm2.5 air quality sensor. https://learn.adafruit.com/pm25-air-quality-sensor.
    [2]
    R. S. Allison, J. M. Johnston, G. Craig, and S. Jennings. Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors, 16(8):1310, 2016.
    [3]
    J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. USA, 114(3):462--467, 2017.
    [4]
    A. Amarasinghe, C. Suduwella, C. Elvitigala, L. Niroshan, R. J. Amaraweera, K. Gunawardana, P. Kumarasinghe, K. D. Zoysa, and C. Keppetiyagama. A machine learning approach for identifying mosquito breeding sites via drone images. In M. R. Eskicioglu, editor, Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, SenSys 2017, Delft, Netherlands, November 06--08, 2017, pages 68:1--68:2. ACM, 2017.
    [5]
    E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621--636, 1989.
    [6]
    A. Balasingam, K. Gopalakrishnan, R. Mittal, V. Arun, A. Saeed, M. Alizadeh, H. Balakrishnan, and H. Balakrishnan. Throughput-fairness tradeoffs in mobility platforms. https://arxiv.org/abs/2105.11999, 2021.
    [7]
    D. Bertsimas, P. Jaillet, and S. Martin. Online vehicle routing: The edge of optimization in large-scale applications. Oper. Res., 67(1):143--162, 2019.
    [8]
    D. J. Bertsimas. A vehicle routing problem with stochastic demand. Oper. Res., 40(3):574--585, 1992.
    [9]
    S. Boyd and L. Vandenberghe. Convex Optimization, chapter Convex Sets, page 21--66. Cambridge University Press, 2004.
    [10]
    S. Boyd and L. Vandenberghe. Convex Optimization, chapter Convex Optimization Problems, pages 146--148. Cambridge University Press, 2004.
    [11]
    G. Bradski. The OpenCV Library. Dr. Dobb's Journal of Software Tools, 2000.
    [12]
    A. Braverman, J. G. Dai, X. Liu, and L. Ying. Empty-car routing in ridesharing systems. Oper. Res., 67(5):1437--1452, 2019.
    [13]
    N. T. L. Commission. Taxi & limousine commission - homepage. https://www1.nyc.gov/site/tlc/index.page.
    [14]
    N. T. L. Commission. Tlc trip record data. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
    [15]
    A. J. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. In L. H. Landweber, editor, SIGCOMM '89, Proceedings of the ACM Symposium on Communications Architectures & Protocols, Austin, TX, USA, September 19--22, 1989, pages 1--12. ACM, 1989.
    [16]
    A. Dhekne, A. Chakraborty, K. Sundaresan, and S. Rangarajan. Trackio: Tracking first responders inside-out. In J. R. Lorch and M. Yu, editors, 16th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February 26--28, 2019, pages 751--764. USENIX Association, 2019.
    [17]
    DJI. Dji - official website. https://www.dji.com/.
    [18]
    DJI. Flame wheel arf kit: Multirotor flying platform for entertaining and amateur ap. https://www.dji.com/flame-wheel-arf.
    [19]
    Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows. European Journal of Operational Research, 54(1):7--22, 1991.
    [20]
    J. C. L. Fargeas, P. T. Kabamba, and A. R. Girard. Cooperative surveillance and pursuit using unmanned aerial vehicles and unattended ground sensors. Sensors, 15(1):1365--1388, 2015.
    [21]
    FlytBase. Flytos: Operating system for drones. https://flytbase.com/flytos/.
    [22]
    A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant resource fairness: Fair allocation of multiple resource types. In D. G. Andersen and S. Ratnasamy, editors, Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011. USENIX Association, 2011.
    [23]
    B. Golden, S. Raghavan, and E. Wasil. The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series. Springer US, 2008.
    [24]
    Google, Inc. Google maps platform | distance matrix api. https://developers.google.com/maps/documentation/distance-matrix/overview, 2020.
    [25]
    Gurobi Optimization, LLC. Gurobi optimizer reference manual. http://www.gurobi.com", 2020.
    [26]
    S. He, F. Bastani, A. Balasingam, K. Gopalakrishnan, Z. Jiang, M. Alizadeh, H. Balakrishnan, M. J. Cafarella, T. Kraska, and S. Madden. Beecluster: drone orchestration via predictive optimization. In E. de Lara, I. Mohomed, J. Nieh, and E. M. Belding, editors, MobiSys '20: The 18th Annual International Conference on Mobile Systems, Applications, and Services, Toronto, Ontario, Canada, June 15--19, 2020, pages 299--311. ACM, 2020.
    [27]
    A. V. Hof and J. Nieh. Androne: Virtual drone computing in the cloud. In G. Candea, R. van Renesse, and C. Fetzer, editors, Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25--28, 2019, pages 6:1--6:16. ACM, 2019.
    [28]
    IBM. Ibm cplex optimizer. https://www.ibm.com/analytics/cplex-optimizer, 2021.
    [29]
    N. Jozefowiez, F. Semet, and E. Talbi. Multi-objective vehicle routing problems. Eur. J. Oper. Res., 189(2):293--309, 2008.
    [30]
    F. Kelly. Fairness and stability of end-to-end congestion control. Eur. J. Control, 9(2--3):159--176, 2003.
    [31]
    F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc., 49(3):237--252, 1998.
    [32]
    S. Mahmoud, N. Mohamed, and J. Al-Jaroodi. Integrating uavs into the cloud using the concept of the web of things. J. Robotics, 2015:631420:1--631420:10, 2015.
    [33]
    W. Mao, Z. Zhang, L. Qiu, J. He, Y. Cui, and S. Yun. Indoor follow me drone. In T. Choudhury, S. Y. Ko, A. Campbell, and D. Ganesan, editors, Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys'17, Niagara Falls, NY, USA, June 19--23, 2017, pages 345--358. ACM, 2017.
    [34]
    V. Mersheeva and G. Friedrich. Multi-uav monitoring with priorities and limited energy resources. In R. I. Brafman, C. Domshlak, P. Haslum, and S. Zilberstein, editors, Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7--11, 2015, pages 347--356. AAAI Press, 2015.
    [35]
    S. Middleton. Discrimination, Regulation, and Design in Ridehailing. Master's thesis, Massachusetts Institute of Technology, 5 2018.
    [36]
    J. C. Molina, I. Eguia, J. Racero, and F. Guerrero. Multi-objective vehicle routing problem with cost and emission functions. Procedia - Social and Behavioral Sciences, 160:254--263, 2014. XI Congreso de Ingenieria del Transporte (CIT 2014).
    [37]
    L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi. Team-level programming of drone sensor networks. In Á. Lédeczi, P. Dutta, and C. Lu, editors, Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, SenSys '14, Memphis, Tennessee, USA, November 3--6, 2014, pages 177--190. ACM, 2014.
    [38]
    K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Katti. Numfabric: Fast and flexible bandwidth allocation in datacenters. In M. P. Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, editors, Proceedings of the ACM SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22--26, 2016, pages 188--201. ACM, 2016.
    [39]
    L. Perron and V. Furnon. Or-tools. https://developers.google.com/optimization/routing/vrp.
    [40]
    R. Petrolo, Y. Lin, and E. W. Knightly. ASTRO: autonomous, sensing, and tetherless networked drones. In Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, DroNet@MobiSys 2018, Munich, Germany, June 10--15, 2018, pages 1--6. ACM, 2018.
    [41]
    C. E. Rasmussen. Gaussian processes in machine learning. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, ML Summer Schools 2003, Canberra, Australia, February 2--14, 2003, Tübingen, Germany, August 4--16, 2003, Revised Lectures, volume 3176 of Lecture Notes in Computer Science, pages 63--71. Springer, 2003.
    [42]
    J. Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/darknet/, 2013--2016.
    [43]
    É. D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks, 23(8):661--673, 1993.
    [44]
    P. Toth and D. Vigo, editors. The Vehicle Routing Problem, volume 9 of SIAM monographs on discrete mathematics and applications. SIAM, 2002.
    [45]
    Uber Technologies. What is destination discrimination? https://help.uber.com/driving-and-delivering/article/what-is-destination-discrimination?nodeId=9bde02cc-3d43-4837-9384-d28c57755fd9, 2021.
    [46]
    D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha, A. Kapoor, M. Sudarshan, and S. Stratman. Farmbeats: An iot platform for data-driven agriculture. In A. Akella and J. Howell, editors, 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27--29, 2017, pages 515--529. USENIX Association, 2017.
    [47]
    M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti. Addressing the minimum fleet problem in on-demand urban mobility. Nat., 557(7706):534--538, 2018.
    [48]
    J. Yapp, R. Seker, and R. F. Babiceanu. UAV as a service: A network simulation environment to identify performance and security issues for commercial uavs in a coordinated, cooperative environment. In J. Hodický, editor, Modelling and Simulation for Autonomous Systems - Third International Workshop, MESAS 2016, Rome, Italy, June 15--16, 2016, Revised Selected Papers, volume 9991 of Lecture Notes in Computer Science, pages 347--355, 2016.
    [49]
    D. Zipper. Did uber just enable discrimination by destination? https://www.bloomberg.com/news/articles/2019-12-11/the-discrimination-risk-in-uber-s-new-driver-rule, 2019.

    Cited By

    View all
    • (2022)Optimization-based Predictive Approach for On-Demand TransportationPRICAI 2022: Trends in Artificial Intelligence10.1007/978-3-031-20868-3_34(466-477)Online publication date: 10-Nov-2022

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MobiSys '21: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services
    June 2021
    528 pages
    ISBN:9781450384438
    DOI:10.1145/3458864
    This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 June 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. aerial sensing
    2. mobility platforms
    3. optimization
    4. resource allocation
    5. ridesharing
    6. vehicle routing

    Qualifiers

    • Research-article

    Funding Sources

    • NASA University Leadership Initiative
    • NSF

    Conference

    MobiSys '21
    Sponsor:

    Acceptance Rates

    MobiSys '21 Paper Acceptance Rate 36 of 166 submissions, 22%;
    Overall Acceptance Rate 274 of 1,679 submissions, 16%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)231
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 13 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Optimization-based Predictive Approach for On-Demand TransportationPRICAI 2022: Trends in Artificial Intelligence10.1007/978-3-031-20868-3_34(466-477)Online publication date: 10-Nov-2022

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    ePub

    View this article in ePub.

    ePub

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media