Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3459930.3469566acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Investigating statistical analysis for network motifs

Published: 01 August 2021 Publication History

Abstract

Network motifs are frequent and statistically significant subgraph patterns in a network. Its statistical uniqueness is generally determined by an explicit generation of many random graphs followed by subgraph sampling, and computation of P-value or Z-score, which is called EXPLICIT. It absorbs most computational time in detection of network motifs as typically 1,000 number of random graphs are generated and analyzed. Here, we investigated a DIRECT method which was introduced as an alternative to EXPLICIT, to speed up the process by removing the need of the explicit generation of random graphs. Although DIRECT's efficiency was described in theory, it was never adapted to detection of network motifs in practice. Therefore, we investigated, implemented, and applied DIRECT with a different statistical measurement to determine network motifs. Experimental results demonstrate that DIRECT is a good alternative to EXPLICIT, because it is much faster than EXPLICIT in detection of small size of network motifs, and the results are generally consistent with those by EXPLICIT.

References

[1]
Istvan ALBERT and Réka ALBERT. 2004. Conserved network motifs allow protein-protein interaction prediction. Bioinformatics (Oxford, England) 20, 18 (2004), 3346--3352.
[2]
Edward A. Bender. 1974. The asymptotic number of non-negative integer matrices with given row and column sums. Discrete mathematics 10, 2 (1974), 217--223.
[3]
Edward A. Bender and E. Rodney Canfield. 1978. The asymptotic number of labeled graphs with given degree sequences. Journal of combinatorial theory. Series A 24, 3 (1978), 296--307.
[4]
Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun S. Liu. 2005. Sequential Monte Carlo Methods for Statistical Analysis of Tables. J. Amer. Statist. Assoc. 100, 469 (Mar 1, 2005), 109--120.
[5]
Joshua A. Grochow and Manolis Kellis. 2007. Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking. Springer Berlin Heidelberg, Berlin, Heidelberg, 92--106.
[6]
Tien Huynh, Somadina Mbadiwe, and Wooyoung Kim. 2018. NemoMap : Improved Motif-centric Network Motif Discovery Algorithm. Advances in Science, Technology and Engineering Systems Journal 3, 5 (2018), 186--199.
[7]
Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael Itzkovitz, and Uri Alon. 2005. Coarse-graining and self-dissimilarity of complex networks. Physical review. E, Statistical, nonlinear, and soft matter physics 71, 1 Pt 2 (Jan 2005), 016127.
[8]
Björn H. Junker and Falk Schreiber. 2007. Analysis of Biological Networks (1 ed.). Vol. 2. Wiley, Hoboken.
[9]
S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, M. G. Surette, and U. Alon. 2001. Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria. Science 292, 5524 (Jun 15 2001), 2080--2083.
[10]
N. Kashtan, S. Itzkovitz, R. Mile, and U. Alon. 2004. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics (Oxford, England) 20, 11 (2004), 1746--1758.
[11]
Wooyoung Kim, Yi-hsin Hsu, Zican Li, Preston Mar, and Yangxiao Wang. 2020. NemoSuite : Web-based Network Motif Analytic Suite. Advances in Science, Technology and Engineering Systems Journal 5, 6 (2020), 1545--1553.
[12]
Tong Ihn Lee, Nicola J. Rinaldi, Francois Robert, Duncan T. Odom, Ziv BarJoseph, Georg K. Gerber, Nancy M. Hannett, Christopher T. Harbison, Craig M. Thompson, Itamar Simon, Julia Zeitlinger, Ezra G. Jennings, Heather L. Murray, D. Benjamin Gordon, Bing Ren, John J. Wyrick, Jean-Bosco Tagne, Thomas L. Volkert, Ernest Fraenkel, David K. Gifford, and Richard A. Young. 2002. Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 298, 5594 (Oct 25, 2002), 799--804.
[13]
Sergei Maslov and Kim Sneppen. 2002. Specificity and Stability in Topology of Protein Networks. Science 296, 5569 (May 3, 2002), 910--913.
[14]
Somadina Mbadiwe and Wooyoung Kim. 2017. ParaMODA: Improving motif-centric subgraph pattern search in PPI networks. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE BIBM, Kansas City, MO. USA, 1723--1730.
[15]
Brendan D. McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II. Journal of symbolic computation 60 (Jan 2014), 94--112.
[16]
H. W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps, K. Lemcke, G. Mannhaupt, F. Pfeiffer, C. Schüller, S. Stocker, and B. Weil. 2000. MIPS: a database for genomes and protein sequences. Nucleic acids research 28, 1 (2000), 37--40.
[17]
Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of Evolved and Designed Networks. Science 303, 5663 (Mar 5, 2004), 1538--1542.
[18]
Ron Milo, Nadav Kashtan, Shalev Itzkovitz, M. Newman, and Uri Alon. 2004. On the uniform generation of random graphs with prescribed degree sequences. Tech rep 21 (01 2004).
[19]
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594 (Oct 25, 2002), 824--827.
[20]
M. E. J. Newman. 2002. Assortative mixing in networks. Physical review letters 89, 20 (Nov 11, 2002), 208701.
[21]
John Gray Peatman. 1963. Introduction to applied statistics. Harper & Row, New York.
[22]
Pedro Ribeiro, Fernando Silva, and LuÃfÂs Lopes. 2012. Parallel discovery of network motifs. J. Parallel and Distrib. Comput. 72, 2 (2012), 144.
[23]
John M. Roberts. 2000. Simple methods for simulating sociomatrices with given marginal totals. Social networks 22, 3 (2000), 273--283.
[24]
Michal Ronen, Revital Rosenberg, Boris I. Shraiman, and Uri Alon. 2002. Assigning Numbers to the Arrows: Parameterizing a Gene Regulation Network by Using Accurate Expression Kinetics. Proceedings of the National Academy of Sciences - PNAS 99, 16 (Aug 6 2002), 10555--10560.
[25]
Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome research 13, 11 (2003), 2498--2504.
[26]
Shai S. Shen-Orr, Uri Alon, Shmoolik Mangan, and Ron Milo. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nature genetics 31, 1 (May 2002), 64--68.
[27]
G. M. Slota and K. Madduri. 2013. Fast Approximate Subgraph Counting and Enumeration. In 2013 42nd International Conference on Parallel Processing. IEEE ICPP, Lyon, France, 210--219.
[28]
Alessandro Vespignani. 2003. Evolution thinks modular. Nature genetics 35, 2 (Oct 2003), 118--119.
[29]
Sebastian Wernicke. 2006. Efficient Detection of Network Motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 3, 4 (Oct 1, 2006), 347--359.
[30]
Sebastian Wernicke and Florian Rasche. 2006. FANMOD: a tool for fast network motif detection. Bioinformatics (Oxford, England) 22, 9 (2006), 1152--1153.
[31]
Elisabeth Wong, Brittany Baur, Saad Quader, and Chun-Hsi Huang. 2012. Biological network motif detection: principles and practice. Briefings in bioinformatics 13, 2 (2012), 202--215.
[32]
I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg. 2002. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research 30, 1 (Jan 1 2002), 303--305.

Cited By

View all
  • (2024)Toward Implementing an Agent-based Distributed Graph Database System2024 IEEE International Conference on Big Data (BigData)10.1109/BigData62323.2024.10825052(3456-3465)Online publication date: 15-Dec-2024

Index Terms

  1. Investigating statistical analysis for network motifs

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      BCB '21: Proceedings of the 12th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
      August 2021
      603 pages
      ISBN:9781450384506
      DOI:10.1145/3459930
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 August 2021

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. direct
      2. explicit
      3. network motif
      4. statistics

      Qualifiers

      • Research-article

      Conference

      BCB '21
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 254 of 885 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)4
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 27 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Toward Implementing an Agent-based Distributed Graph Database System2024 IEEE International Conference on Big Data (BigData)10.1109/BigData62323.2024.10825052(3456-3465)Online publication date: 15-Dec-2024

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media