Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Reconfigurable Framework for Resilient Semantic Segmentation for Space Applications

Published: 13 September 2021 Publication History

Abstract

Deep learning (DL) presents new opportunities for enabling spacecraft autonomy, onboard analysis, and intelligent applications for space missions. However, DL applications are computationally intensive and often infeasible to deploy on radiation-hardened (rad-hard) processors, which traditionally harness a fraction of the computational capability of their commercial-off-the-shelf counterparts. Commercial FPGAs and system-on-chips present numerous architectural advantages and provide the computation capabilities to enable onboard DL applications; however, these devices are highly susceptible to radiation-induced single-event effects (SEEs) that can degrade the dependability of DL applications. In this article, we propose Reconfigurable ConvNet (RECON), a reconfigurable acceleration framework for dependable, high-performance semantic segmentation for space applications. In RECON, we propose both selective and adaptive approaches to enable efficient SEE mitigation. In our selective approach, control-flow parts are selectively protected by triple-modular redundancy to minimize SEE-induced hangs, and in our adaptive approach, partial reconfiguration is used to adapt the mitigation of dataflow parts in response to a dynamic radiation environment. Combined, both approaches enable RECON to maximize system performability subject to mission availability constraints. We perform fault injection and neutron irradiation to observe the susceptibility of RECON and use dependability modeling to evaluate RECON in various orbital case studies to demonstrate a 1.5–3.0× performability improvement in both performance and energy efficiency compared to static approaches.

References

[1]
Dimitris Agiakatsikas, Nguyen T. H. Nguyen, Zhuoran Zhao, Tong Wu, Ediz Cetin, Oliver Diessel, and Lingkan Gong. 2016. Reconfiguration control networks for TMR systems with module-based recovery. In Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM'16). 88–91. https://doi.org/10.1109/FCCM.2016.30
[2]
Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 12(2017), 2481–2495.
[3]
Fabio Benevenuti, Fabiano Libano, Vincent Pouget, Fernanda Lima Kastensmidt, and Paolo Rech. 2018. Comparative analysis of inference errors in a neural network implemented in SRAM-based FPGA induced by neutron irradiation and fault injection methods. In Proceedings of the 2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI'18). 1–6. https://doi.org/10.1109/SBCCI.2018.8533235
[4]
Melanie Berg, Christian Poivey, David Petrick, Daniel Espinosa, Austin Lesea, Kenneth A. LaBel, Mark Friendlich, Hak Kim, and Anthony Phan. 2008. Effectiveness of internal versus external SEU scrubbing mitigation strategies in a Xilinx FPGA: Design, test, and analysis. IEEE Trans. Nucl. Sci. 55, 4 (Aug. 2008), 2259–2266. https://doi.org/10.1109/TNS.2008.2001422
[5]
Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio. 2007. TMR and partial dynamic reconfiguration to mitigate SEU faults in FPGAs. In Proceedings of the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'07). 87–95. https://doi.org/10.1109/DFT.2007.25
[6]
Sébastien Bourdarie and Michael Xapsos. 2008. The near-earth space radiation environment. IEEE Trans. Nucl. Sci. 55, 4 (Aug 2008), 1810–1832. https://doi.org/10.1109/TNS.2008.2001409
[7]
Cody Brewer, Nicholas Franconi, Robin Ripley, Alessandro Geist, Travis Wise, Sebastian Sabogal, Gary Crum, Sabrena Heyward, and Christopher Wilson. 2020. NASA SpaceCube intelligent multi-purpose system for enabling remote sensing, communication, and navigation in mission architectures. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites. AIAA, 1–6.
[8]
Michael J. Campola and Jonathan A. Pellish. 2019. Radiation hardness assurance: Evolving for newspace. In Proceedings of the 2019 RADiations Effects on Components and Systems (RADECS'19) Short Course, Part V. 1–35.
[9]
BAA DARPA. 2018. Blackjack (BAA HR001118S0032). DARPA.
[10]
BAA DARPA. 2019. Blackjack Pit Boss (BAA HR001119S0012). DARPA.
[11]
Fernando Fernandes dos Santos, Caio Lunardi, Daniel Oliveira, Fabiano Libano, and Paolo Rech. 2019. Reliability evaluation of mixed-precision architectures. In Proceedings of the 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA'19). 238–249. https://doi.org/10.1109/HPCA.2019.00041
[12]
Boyang Du, Sarah Azimi, Corrado de Sio, Ludovica Bozzoli, and Luca Sterpone. 2019. On the reliability of convolutional neural network implementation on SRAM-based FPGA. In Proceedings of the 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT'19). 1–6. https://doi.org/10.1109/DFT.2019.8875362
[13]
Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph Doehring, Martin Kumm, Peter Zipf, and Kees Vissers. 2019. Efficient error-tolerant quantized neural network accelerators. In Proceedings of the 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT'19). 1–6. https://doi.org/10.1109/DFT.2019.8875314
[14]
Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Pablo Martinez-Gonzalez, and Jose Garcia-Rodriguez. 2018. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70 (2018), 41–65. https://doi.org/10.1016/j.asoc.2018.05.018
[15]
Alessandro Geist, Cody Brewer, Milton Davis, Nicholas Franconi, Sabrena Heyward, Travis Wise, Gary Crum, David Petrick, Robin Ripley, Christopher Wilson, and Thomas Flatley. 2019. SpaceCube v3.0 NASA next-generation high-performance processor for science applications. In Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites. AIAA, 1–9.
[16]
Alan D. George and Christopher M. Wilson. 2018. Onboard processing with hybrid and reconfigurable computing on small satellites. Proc. IEEE 106, 3 (Mar. 2018), 458–470. https://doi.org/10.1109/JPROC.2018.2802438
[17]
Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2019. [DL] A survey of FPGA-based neural network inference accelerators. ACM Trans. Reconfig. Technol. Syst. 12, 1, Article 2(Mar. 2019), 26 pages. https://doi.org/10.1145/3289185
[18]
Felix R. Hoots and Ronald L. Roehrich. 1980. Models for Propagation of NORAD Element Sets. Technical Report. Aerospace Defense Command Peterson AFB, Office of Astrodynamics.
[19]
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2704–2713.
[20]
Adam Jacobs, Grzegorz Cieslewski, Alan D. George, Ann Gordon-Ross, and Herman Lam. 2012. Reconfigurable fault tolerance: A comprehensive framework for reliable and adaptive FPGA-based space computing. ACM Trans. Reconfig. Technol. Syst. 5, 4, Article 21(Dec. 2012), 30 pages. https://doi.org/10.1145/2392616.2392619
[21]
Jonathan M. Johnson and Michael J. Wirthlin. 2010. Voter insertion algorithms for FPGA designs using triple modular redundancy. In Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA'10). ACM, New York, NY, 249–258. https://doi.org/10.1145/1723112.1723154
[22]
Kenneth A. LaBel and Jonathan A. Pellish. 2014. National radiation hardness assurance (RHA) planning for NASA missions: Updated guidance. NASA Electronic Parts and Packaging Program (NEPP) (March 2014).
[23]
Fahad Lateef and Yassine Ruichek. 2019. Survey on semantic segmentation using deep learning techniques. Neurocomputing 338(2019), 321–348. https://doi.org/10.1016/j.neucom.2019.02.003
[24]
Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16). 4013–4021.
[25]
Robert Le. 2012. Soft error mitigation using prioritized essential bits. Xilinx XAPP538 (v1. 0).
[26]
Fabiano Libano, Brittany Wilson, Jon-Paul Anderson, Michael J. Wirthlin, Carlo Cazzaniga, Christopher Frost, and Paolo Rech. 2019. Selective hardening for neural networks in FPGAs. IEEE Trans. Nucl. Sci. 66, 1 (Jan. 2019), 216–222. https://doi.org/10.1109/TNS.2018.2884460
[27]
Fabiano Libano, Brittany Wilson, Michael Wirthlin, Paolo Rech, and John Brunhaver. 2020. Understanding the impact of quantization, accuracy, and radiation on the reliability of convolutional neural networks on FPGAs. IEEE Trans. Nucl. Sci. 67, 7 (Jul. 2020), 1478–1484. https://doi.org/10.1109/TNS.2020.2983662
[28]
Tyler M. Lovelly and Alan D. George. 2017. Comparative analysis of present and future space-grade processors with device metrics. J. Aerosp. Inf. Syst. 14, 3 (01 Mar. 2017), 184–197. https://doi.org/10.2514/1.I010472
[29]
David J. Miranda. 2020. 2020 NASA technology taxonomy: 2015 Technology areas to 2020 taxonomy areas crosswalk (HQ-E-DAA-TN76653). NASA.
[30]
Sparsh Mittal. 2020. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 32, 4 (01 Feb. 2020), 1109–1139. https://doi.org/10.1007/s00521-018-3761-1
[31]
Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd Austin. 2003. A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-36).29–40. https://doi.org/10.1109/MICRO.2003.1253181
[32]
National Academies of Sciences, Engineering, and Medicine. 2016. Achieving Science with CubeSats: Thinking Inside the Box. The National Academies Press, Washington, DC. https://doi.org/10.17226/23503
[33]
National Academies of Sciences, Engineering, and Medicine. 2018. Testing at the Speed of Light: The State of U.S. Electronic Parts Space Radiation Testing Infrastructure. The National Academies Press, Washington, DC. https://doi.org/10.17226/24993
[34]
National Academies of Sciences, Engineering, and Medicine. 2018. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, Washington, DC. https://doi.org/10.17226/24938
[35]
Suzanne F. Nowicki, Stephen A. Wender, and Michael Mocko. 2017. The Los Alamos Neutron Science Center spallation neutron sources. Phys. Proc. 90(2017), 374–380. https://doi.org/10.1016/j.phpro.2017.09.035
[36]
ISPRS Potsdam. 2018. 2D Semantic Labeling Dataset. Retrieved from http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html.
[37]
Heather Quinn. 2014. Challenges in testing complex systems. IEEE Trans. Nucl. Sci. 61, 2 (Apr. 2014), 766–786. https://doi.org/10.1109/TNS.2014.2302432
[38]
Heather Quinn. 2017. Radiation effects in reconfigurable FPGAs. Semiconduct. Sci. Technol. 32, 4 (Mar. 2017), 1–8. https://doi.org/10.1088/1361-6641/aa57f6
[39]
George A. Reis, Jonathan Chang, Neil Vachharajani, Shubhendu S. Mukherjee, Ram Rangan, and David I. August. 2005. Design and evaluation of hybrid fault-detection systems. In Proceedings of the 32nd International Symposium on Computer Architecture (ISCA'05). 148–159. https://doi.org/10.1109/ISCA.2005.21
[40]
Seth Roffe, Theodore Schwarz, Thomas Cook, Noah Perryman, Justin Goodwill, Evan Gretok, Aidan Phillips, Mitchell Moran, Tyler Garrett, and Alan George. 2020. CASPR: Autonomous sensor processing experiment for STP-H7. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites. AIAA, 1–11.
[41]
Sebastian Sabogal, Patrick Gauvin, Brad Shea, Daniel Sabogal, Antony Gillette, Christopher Wilson, Ansel Barchowsky, Alan D. George, Gary Crum, and Thomas Flatley. 2017. SSIVP: Spacecraft supercomputing experiment for STP-H6. In Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites. AIAA, 1–12.
[42]
Sebastian Sabogal, Alan George, and Gary Crum. 2019. ReCoN: A reconfigurable CNN acceleration framework for hybrid semantic segmentation on hybrid SoCs for space applications. In Proceedings of the 2019 IEEE Space Computing Conference (SCC'19). 41–52. https://doi.org/10.1109/SpaceComp.2019.00010
[43]
Sebastian Sabogal, Alan George, and Christopher Wilson. 2020. Reconfigurable framework for environmentally adaptive resilience in hybrid space systems. ACM Trans. Reconfig. Technol. Syst. 13, 3, Article 14(Jul. 2020), 1–32. https://doi.org/10.1145/3398380
[44]
Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Netw. 61(2015), 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
[45]
Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. 2015. Mitigation of radiation effects in SRAM-based FPGAs for space applications. ACM Comput. Surv. 47, 2, Article 37 (Jan. 2015), 34 pages. https://doi.org/10.1145/2671181
[46]
Aaron Stoddard, Ammon Gruwell, Peter Zabriskie, and Michael J. Wirthlin. 2017. A hybrid approach to FPGA configuration scrubbing. IEEE Trans. Nucl. Sci. 64, 1 (Jan. 2017), 497–503. https://doi.org/10.1109/TNS.2016.2636666
[47]
Michael A. Swartout. 2020. CubeSats mission assurance trends. In Proceedings of the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW'20). NASA GSFC, Greenbelt, MD.
[48]
Lucas A. Tambara, Felipe Almeida, Paolo Rech, Fernanda L. Kastensmidt, Giovanni Bruni, and Christopher Frost. 2015. Measuring failure probability of coarse and fine grain TMR schemes in SRAM-based FPGAs under neutron-induced effects. In Applied Reconfigurable Computing. Springer International Publishing, Cham, 331–338.
[49]
César Torres-Huitzil and Bernard Girau. 2017. Fault tolerance in neural networks: Neural design and hardware implementation. In Proceedings of the 2017 International Conference on ReConFigurable Computing and FPGAs (ReConFig'17). 1–6. https://doi.org/10.1109/RECONFIG.2017.8279793
[50]
Allan J. Tylka, James H. Adams, Paul R. Boberg, Buddy Brownstein, William F. Dietrich, Erwin O. Flueckiger, Edward L. Petersen, Margaret A. Shea, Don F. Smart, and Edward C. Smith. 1997. CREME96: A revision of the cosmic ray effects on micro-electronics code. IEEE Trans. Nucl. Sci. 44, 6 (Dec. 1997), 2150–2160. https://doi.org/10.1109/23.659030
[51]
Ingo Wardinski, Diana Saturnino, Hagay Amit, Aude Chambodut, Benoit Langlais, Mioara Mandea, and Thébault Erwan. 2020. Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13). Earth Planets Space 72, 1 (22 Oct. 2020), 1–155. https://doi.org/10.1186/s40623-020-01254-7
[52]
Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017. Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the 54th Annual Design Automation Conference (DAC'17). Association for Computing Machinery, New York, NY, Article 29, 6 pages. https://doi.org/10.1145/3061639.3062207
[53]
Caleb Williams and Stephanie DelPozzo. 2020. 2020 Nano/microsatellite market forecast2020 Nano/Microsatellite Market Forecast, 10th ed. SpaceWorks Enterprises, Inc.
[54]
Christopher Wilson and Alan D. George. 2018. CSP Hybrid space computing. J. Aerosp. Inf. Syst. 15, 4 (2 Feb. 2018), 215–227. https://doi.org/10.2514/1.I010572
[55]
Michael Wirthlin. 2015. High-reliability FPGA-based systems: Space, high-energy physics, and beyond. Proc. IEEE 103, 3 (Mar. 2015), 379–389. https://doi.org/10.1109/JPROC.2015.2404212
[56]
Michael A. Xapsos, Patrick M. O'Neill, and T. Paul O'Brien. 2013. Near-earth space radiation models. IEEE Trans. Nucl. Sci. 60, 3 (June 2013), 1691–1705. https://doi.org/10.1109/TNS.2012.2225846
[57]
Xilinx. 2018. Zynq-7000 SoC Technical Reference Manual (v1.12.2 ed.). Xilinx User Guide (UG585).
[58]
Xilinx. 2019. Zynq UltraScale+ Device Technical Reference Manual (v2.1 ed.). Xilinx User Guide (UG1085).
[59]
Zhuoran Zhao, Dimitris Agiakatsikas, Nguyen T. H. Nguyen, Ediz Cetin, and Oliver Diessel. 2016. Fine-grained module-based error recovery in FPGA-based TMR systems. In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT'16). 101–108. https://doi.org/10.1109/FPT.2016.7929433
[60]
Zhuoran Zhao, Nguyen T. H. Nguyen, Dimitris Agiakatsikas, Ganghee Lee, Ediz Cetin, and Oliver Diessel. 2018. Fine-grained module-based error recovery in FPGA-based TMR systems. ACM Trans. Reconfig. Technol. Syst. 11, 1, Article 4(Jan. 2018), 1–23 pages. https://doi.org/10.1145/3173549

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems  Volume 14, Issue 4
December 2021
165 pages
ISSN:1936-7406
EISSN:1936-7414
DOI:10.1145/3483341
  • Editor:
  • Deming Chen
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 September 2021
Accepted: 01 June 2021
Revised: 01 June 2021
Received: 01 February 2021
Published in TRETS Volume 14, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Environmentally adaptive computing
  2. dependability modeling
  3. space computing
  4. single-event effects

Qualifiers

  • Research-article
  • Refereed

Funding Sources

  • SHREC industry and agency members and by the IUCRC Program of the National Science Foundation
  • Los Alamos Neutron Science Center (LANSCE)
  • NNSA User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)35
  • Downloads (Last 6 weeks)3
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media