Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3478384.3478385acmotherconferencesArticle/Chapter ViewAbstractPublication PagesamConference Proceedingsconference-collections
research-article

Automatic acoustic classification of feline sex

Published: 15 October 2021 Publication History

Abstract

This paper presents a novel method for classifying the feline sex based on the respective vocalizations. Due to the size of the available dataset, we rely on tree-based classifiers which can efficiently learn classification rules in such poor data availability cases. More specifically, this work investigates the ability of random forests and boosting classifiers when trained with a wide range of acoustic features derived both from time and frequency domain. The considered classifiers are evaluated using standardized figures of merit including f1-score, recall, precision, and accuracy. The best-performing classifier was the CatBoost, while the obtained results are in line with the state-of-the-art accuracy levels in the field of animal sex classification.

References

[1]
Neila Ben Sassi, Xavier Averós, and Inma Estevez. 2016. Technology and poultry welfare. Animals 6, 10 (2016), 62.
[2]
Daniel T Blumstein, Daniel J Mennill, Patrick Clemins, Lewis Girod, Kung Yao, Gail Patricelli, Jill L Deppe, Alan H Krakauer, Christopher Clark, Kathryn A Cortopassi, 2011. Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. Journal of Applied Ecology 48, 3 (2011), 758–767.
[3]
Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https://doi.org/10.1023/A:1010933404324
[4]
Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984. Classification and regression trees. CRC press.
[5]
Alexandra F da S Cordeiro, Irenilza de A Nääs, Felipe da Silva Leitão, Andréia CM de Almeida, and Daniella Jorge de Moura. 2018. Use of vocalisation to identify sex, age, and distress in pig production. Biosystems engineering 173 (2018), 57–63.
[6]
Sandra Düpjan, Peter-Christian Schön, Birger Puppe, Armin Tuchscherer, and Gerhard Manteuffel. 2008. Differential vocal responses to physical and mental stressors in domestic pigs (Sus scrofa). Applied Animal Behaviour Science 114, 1-2 (2008), 105–115.
[7]
Wendy M Erb, J Keith Hodges, and Kurt Hammerschmidt. 2013. Individual, contextual, and age-related acoustic variation in simakobu (Simias concolor) loud calls. PLoS One 8, 12 (2013), e83131.
[8]
Vasileios Exadaktylos, Mitchell Silva, J-M Aerts, C James Taylor, and Daniel Berckmans. 2008. Real-time recognition of sick pig cough sounds. Computers and electronics in agriculture 63, 2 (2008), 207–214.
[9]
Sara Ferrari, Mitchell Silva, Marcella Guarino, and Daniel Berckmans. 2008. Analysis of cough sounds for diagnosis of respiratory infections in intensive pig farming. Transactions of the ASABE 51, 3 (2008), 1051–1055.
[10]
Julia Fischer, Kurt Hammerschmidt, Dorothy L Cheney, and Robert M Seyfarth. 2002. Acoustic features of male baboon loud calls: Influences of context, age, and individuality. The Journal of the Acoustical Society of America 111, 3 (2002), 1465–1474.
[11]
Ilaria Fontana, Emanuela Tullo, Lenn Carpentier, Dries Berckmans, Andy Butterworth, Erik Vranken, Tomas Norton, Daniel Berckmans, and Marcella Guarino. 2017. Sound analysis to model weight of broiler chickens. Poultry Science 96, 11 (2017), 3938–3943.
[12]
I Fontana, E Tullo, A Scrase, and A Butterworth. 2016. Vocalisation sound pattern identification in young broiler chickens. Animal 10, 9 (2016), 1567–1574.
[13]
A Ivanenko, Paul Watkins, MAJ van Gerven, K Hammerschmidt, and B Englitz. 2020. Classifying sex and strain from mouse ultrasonic vocalizations using deep learning. PLoS computational biology 16, 6 (2020), e1007918.
[14]
Miron B. Kursa and Witold R. Rudnicki. 2010. Feature Selection with the Boruta Package. Journal of Statistical Software, Articles 36, 11 (2010), 1–13. https://doi.org/10.18637/jss.v036.i11
[15]
Ana Larranaga, Concha Bielza, Péter Pongrácz, Tamás Faragó, Anna Bálint, and Pedro Larranaga. 2015. Comparing supervised learning methods for classifying sex, age, context and individual Mudi dogs from barking. Animal cognition 18, 2 (2015), 405–421.
[16]
Scott R Loss, Tom Will, and Peter P Marra. 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nature communications 4, 1 (2013), 1–8.
[17]
Luca Andrea Ludovico, Stavros Ntalampiras, Giorgio Presti, Simona Cannas, Monica Battini, and Silvana Mattiello. 2020. CatMeows: A Publicly-Available Dataset of Cat Vocalizations. https://doi.org/10.5281/zenodo.4008297 This project was supported by ”Piano di Sostegno alla Ricerca, Linea 2-Mattiello” of the University of Milan (2016).
[18]
Luca A. Ludovico, Stavros Ntalampiras, Giorgio Presti, Emanuela Prato Prato Previde, Monica Battini, Simona Cannas, Clara Palestrini, and Silvana Mattiello. 2019. Automatic Classification of Cat Vocalizations Emitted in Different Contexts. Animals 9, 8 (Aug. 2019), 543. https://doi.org/10.3390/ani9080543
[19]
Oisin Mac Aodha, Rory Gibb, Kate E Barlow, Ella Browning, Michael Firman, Robin Freeman, Briana Harder, Libby Kinsey, Gary R Mead, Stuart E Newson, 2018. Bat detective—Deep learning tools for bat acoustic signal detection. PLoS computational biology 14, 3 (2018), e1005995.
[20]
G Marx, T Horn, J Thielebein, B Knubel, and E Von Borell. 2003. Analysis of pain-related vocalization in young pigs. Journal of sound and vibration 266, 3 (2003), 687–698.
[21]
Stephen G Matthews, Amy L Miller, James Clapp, Thomas Plötz, and Ilias Kyriazakis. 2016. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. The Veterinary Journal 217 (2016), 43–51.
[22]
Brian McFee, Vincent Lostanlen, Alexandros Metsai, Matt McVicar, Stefan Balke, Carl Thomé, Colin Raffel, Frank Zalkow, Ayoub Malek, Dana, Kyungyun Lee, Oriol Nieto, Jack Mason, Dan Ellis, Eric Battenberg, Scott Seyfarth, Ryuichi Yamamoto, Keunwoo Choi, viktorandreevichmorozov, Josh Moore, Rachel Bittner, Shunsuke Hidaka, Ziyao Wei, nullmightybofo, Darío Hereñú, Fabian-Robert Stöter, Pius Friesch, Adam Weiss, Matt Vollrath, and Taewoon Kim. 2020. librosa/librosa: 0.8.0. https://doi.org/10.5281/zenodo.3955228
[23]
Bhadragiri Jagan Mohan 2014. Speech recognition using MFCC and DTW. In 2014 International Conference on Advances in Electrical Engineering (ICAEE). IEEE, 1–4.
[24]
DJ Moura, WT Silva, IA Naas, YA Tolón, KAO Lima, and MM Vale. 2008. Real time computer stress monitoring of piglets using vocalization analysis. Computers and Electronics in Agriculture 64, 1 (2008), 11–18.
[25]
Stavros Ntalampiras. 2021. One-shot learning for acoustic diagnosis of industrial machines. Expert Systems with Applications(2021), 114984. https://doi.org/10.1016/j.eswa.2021.114984
[26]
Karan J. Odom, Marcelo Araya-Salas, Janelle L. Morano, Russell A. Ligon, Gavin M. Leighton, Conor C. Taff, Anastasia H. Dalziell, Alexis C. Billings, Ryan R. Germain, Michael Pardo, Luciana Guimarães Andrade, Daniela Hedwig, Sara C. Keen, Yu Shiu, Russell A. Charif, Michael S. Webster, and Aaron N. Rice. 2021. Comparative bioacoustics: a roadmap for quantifying and comparing animal sounds across diverse taxa. Biological Reviews (March 2021). https://doi.org/10.1111/brv.12695
[27]
Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. 2012. How many trees in a random forest?. In International workshop on machine learning and data mining in pattern recognition. Springer, 154–168.
[28]
Erica M Pereira, Irenilza De A Naeaes, and Rodrigo G Garcia. 2015. Vocalization of broilers can be used to identify their sex and genetic strain. Engenharia Agrícola 35, 2 (2015), 192–196.
[29]
Alain Rakotomamonjy and Gilles Gasso. 2014. Histogram of gradients of time–frequency representations for audio scene classification. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 1(2014), 142–153.
[30]
Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft, and Ole Green. 2012. A vocal-based analytical method for goose behaviour recognition. Sensors 12, 3 (2012), 3773–3788.
[31]
Céline Tallet, Pavel Linhart, Richard Policht, Kurt Hammerschmidt, Petr Šimeček, Petra Kratinova, and Marek Špinka. 2013. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): a comparison of discrete and graded classifications. PLoS One 8, 8 (2013), e71841.
[32]
Luca Turchet, György Fazekas, Mathieu Lagrange, Hossein S. Ghadikolaei, and Carlo Fischione. 2020. The Internet of Audio Things: State of the Art, Vision, and Challenges. IEEE Internet of Things Journal 7, 10 (2020), 10233–10249. https://doi.org/10.1109/JIOT.2020.2997047
[33]
Joris Vandermeulen, Claudia Bahr, Dayle Johnston, Bernadette Earley, Emanuela Tullo, Ilaria Fontana, Marcella Guarino, Vasileios Exadaktylos, and Daniel Berckmans. 2016. Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Computers and Electronics in Agriculture 129 (2016), 15–26.
[34]
Bradley M Whitaker, Brandon T Carroll, Wayne Daley, and David V Anderson. 2014. Sparse decomposition of audio spectrograms for automated disease detection in chickens. In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 1122–1126.
[35]
Connor M. Wood, Stefan Kahl, Philip Chaon, M. Zachariah Peery, and Holger Klinck. 2021. Survey coverage, recording duration and community composition affect observed species richness in passive acoustic surveys. Methods in Ecology and Evolution (March 2021). https://doi.org/10.1111/2041-210x.13571
[36]
Peter H Wrege, Elizabeth D Rowland, Sara Keen, and Yu Shiu. 2017. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods in Ecology and Evolution 8, 10 (2017), 1292–1301.

Cited By

View all
  • (2023)Risevi: A Disease Risk Prediction Model Based on Vision Transformer Applied to Nursing HomesElectronics10.3390/electronics1215320612:15(3206)Online publication date: 25-Jul-2023
  • (2023)The Internet of Sounds: Convergent Trends, Insights, and Future DirectionsIEEE Internet of Things Journal10.1109/JIOT.2023.325360210:13(11264-11292)Online publication date: 1-Jul-2023
  • (2023)Audio-aware applications at the edge using in-browser WebAssembly and fingerprinting2023 4th International Symposium on the Internet of Sounds10.1109/IEEECONF59510.2023.10335388(1-9)Online publication date: 26-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
AM '21: Proceedings of the 16th International Audio Mostly Conference
September 2021
283 pages
ISBN:9781450385695
DOI:10.1145/3478384
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 October 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Internet of Audio Things.
  2. audio pattern recognition
  3. audio signal processing
  4. bioacoustics
  5. domestic animals
  6. tree-based classifiers

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

AM '21
AM '21: Audio Mostly 2021
September 1 - 3, 2021
virtual/Trento, Italy

Acceptance Rates

Overall Acceptance Rate 177 of 275 submissions, 64%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)2
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Risevi: A Disease Risk Prediction Model Based on Vision Transformer Applied to Nursing HomesElectronics10.3390/electronics1215320612:15(3206)Online publication date: 25-Jul-2023
  • (2023)The Internet of Sounds: Convergent Trends, Insights, and Future DirectionsIEEE Internet of Things Journal10.1109/JIOT.2023.325360210:13(11264-11292)Online publication date: 1-Jul-2023
  • (2023)Audio-aware applications at the edge using in-browser WebAssembly and fingerprinting2023 4th International Symposium on the Internet of Sounds10.1109/IEEECONF59510.2023.10335388(1-9)Online publication date: 26-Oct-2023
  • (2023)Identifying Distinguishing Acoustic Features in Felid Vocalizations Based on Call Type and Species ClassificationAcoustics Australia10.1007/s40857-023-00298-551:3(345-357)Online publication date: 10-Jun-2023

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media